
Machine Learning
- Option Pricing, Calibration, Hedging -

- Appendix I -

WBS Quant Conference - Workshop, Rome 2019

Jörg Kienitz / Nikolai Nowaczyk, Quaternion

UCT, BUW, Finciraptor finciraptor.de, joerg.kienitz@gmx.de

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 1/81

Disclaimer

This presentation and any accompanying material are being provided solely for information and general illustrative
purposes. The author will not be responsible for the consequences of reliance upon any information contained in or
derived from the presentation or for any omission of information therefrom and hereby excludes all liability for loss
or damage (including, without limitation, direct, indirect, foreseeable, or consequential loss or damage and
including loss or profit and even if advised of the possibility of such damages or if such damages were foreseeable)
that may be incurred or suffered by any person in connection with the presentation, including (without limitation)
for the consequences of reliance upon any results derived therefrom or any error or omission whether negligent or
not. No representation or warranty is made or given by the author that the presentation or any content thereof will
be error free, updated, complete or that inaccuracies, errors or defects will be corrected.

The views are solely that of the author and not of his employer, Quaternion Risk Management GmbH. The
Chatham House rules apply.

The presentation may not be reproduced in whole or part or delivered to any other person without prior permission
of the author.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 2/81

Neural Networks Introduction

1 Numerics for Stochastic Volatility Models
The Heston Model
Pricing using different Approaches
Python Code - The Heston Class

2 Gaussian Short Rate Models
Definition
Pricing
Path Simulation
The General Gaussian Short Rate Model
LGM Formulation of Gaussian Short Rate

3 Python - Hull-White and QuantLib

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 3/81

Outline

1 Numerics for Stochastic Volatility Models
The Heston Model
Pricing using different Approaches
Python Code - The Heston Class

2 Gaussian Short Rate Models
Definition
Pricing
Path Simulation
The General Gaussian Short Rate Model
LGM Formulation of Gaussian Short Rate

3 Python - Hull-White and QuantLib

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 4/81

Outline

1 Numerics for Stochastic Volatility Models
The Heston Model
Pricing using different Approaches
Python Code - The Heston Class

2 Gaussian Short Rate Models
Definition
Pricing
Path Simulation
The General Gaussian Short Rate Model
LGM Formulation of Gaussian Short Rate

3 Python - Hull-White and QuantLib

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 5/81

The Heston Model

The risk-neutral formulation of the Heston model is given by:

dS(t) = (r − q)S(t)dt +
√

V (t)S(t)dW1(t)

dV (t) = κ(θ − V (t))dt + ν
√
V (t)dW2(t)

S(0) = S0

V (0) = V0

〈dW1(t), dW2(t)〉 = ρdt

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 6/81

The Heston Characteristic Function

the Heston Characteristic Function:

ϕ(z) = exp

(
V0

ν2

1− e−DT

1− Ge−DT
(κ− iρνz − D)

+
κθ

ν2

(
(κ− iρνz − D)T − 2 log

(
1− Ge−DT

1− G

)))
with

D =
√

(κ− iρνz)2 + (z2 + iz)ν2, G =
κ− iρνz − D

κ− iρνz + D

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 7/81

The Heston Characteristic Function

This expression does not suffer from complex discontinuities.

Such representation gives stability if used with computational
methods.

See for instance Albrecher, H. and Mayer P. and Schoutens,
W. and Tistaert, J. (2006) or Lord, R. and Kahl, C. (2005).

Sometimes the asset price S is included into the characteristic
function as well, see for instance Kienitz, J. and Wetterau, D.
(2012).

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 8/81

Outline

1 Numerics for Stochastic Volatility Models
The Heston Model
Pricing using different Approaches
Python Code - The Heston Class

2 Gaussian Short Rate Models
Definition
Pricing
Path Simulation
The General Gaussian Short Rate Model
LGM Formulation of Gaussian Short Rate

3 Python - Hull-White and QuantLib

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 9/81

The Heston Approach

Let S(T) denote the forward value at time T and k = log(K),
then, formula Heston, S. (1993) is:

C (K ,T) = S(T)e−rT
[

1

2
+

1

π

∫ ∞
0
R
(
e iukϕ(u − i)

iuϕ(−i)

)
du

]
+ Ke−rT

[
1

2
+

1

π

∫ ∞
0
R
(
e iukϕ(u)

iu

)
du

]

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 10/81

The Attari Approach

An improvement upon the original formula in Heston, S. (1993)
was given in Attari, M. (2004). It was shown that only one
numerical integration is necessary which decreases the time for
evaluating Call option prices. The formula is:

C (K ,T) = S(T)e−rT − Ke−rT
[

1

2
+

1

π

∫ ∞
0
R
(
e iux

ϕ(u)

iu(1− iu)

)]
The behaviour around 0 may be problematic in this approach.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 11/81

The Carr-Madan Approach (with Kahl-Lord Optimization)

In Carr, P. and Madan, D. (1999) for α > 0 and x = log(K/S) the
following formula was used for pricing European Call options:

C (K ,T) = S(T)
e−αx−rT

π

∫ ∞
0
R
(
e−iux

ϕ(u − (α + 1)i

(α + iu)(α + 1 + iu)

)
du

The parameter α is called dampening parameter and a method for
choosing it. They suggest to take some α such that

E[S1+α] < +∞.

It can be regarded as a free parameter! The function ϕ is the
Fourier transform of damped option prices involving the Fourier
transform of the model.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 12/81

The Optimal Value for α

In Lord, R. and Kahl, C. (2005) it is suggested to use an optimal
parameter for α (see also Kienitz, J. and Wetterau, D. (2012)). To
calculate α we first consider an interval where the optimal value is
located. Let [αlow max, αtop max] be the interval. We use:

αlow max =

ν − 2κρ+

√
(ν − 2κρ)2 + 4(1− ρ2)κ2 +

(
4π2

T 2

)
− δ

2ν(1− ρ2)
− 1

αtop max =
ν − 2κρ+

√
(ν − 2κρ)2 + 4(1− ρ2)κ2 + δ

2ν(1− ρ2)
− 1

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 13/81

The Optimal Value for α

This choice is due to the fact that the term appearing with V0 in ϕ
should not explode. We solve

1− Ge−DT

1− e−DT

1

κ− (α + 1)ρν − D
= 0

We solve numerically for the maximal level α and, then, for the
optimal value for α:

αoptimal = argminα∈(0,αmax) − αk + log(ϕ(−(α + 1)i)).

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 14/81

Numerical Experiments - Parameters

Set S0 T K V0 Θ κ ν ρ αopt

Set 1 1 1/52 2 0.1 0.1 1 1 -0.9 37.430861
Set 2 1 0.1 1.2 0.1 0.1 1 1 -0.7 541.928459
Set 3 1 1 1.2 0.1 0.1 1 1 -0.7 15.9920

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 15/81

Dependence of Integrand on α

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

α

max
 = 649.5907

α
opt

 = 541

α
CM

 = 649.5907/4

α = 649.5907/8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

α

max
 = 21.6663

α
opt

 = 15.992

α
CM

 = 21.6663/4

α = 21.6663/8

Figure: Dependence of the integrand on α for Set 2 (left) and Set 3
(right).

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 16/81

Function Optimization - Set 3

−10 0 10 20 30
−10

0

10

20

Function to determin α
o

−4 −3 −2 −1
−1

0

1

2

3

4

Function in [α
m

,−1]

−1 −0.5 0
1

1.5

2

2.5

3
Function in [−1,0]

0 5 10 15 20
−10

−5

0

5

10

Figure: Optimal α calculation.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 17/81

The Lewis Approach

The pricing formula obtained in Lewis, A. (2001) is very stable and
can be extended to other payoffs different from European Call
options. For the latter type of payoff the formula is:

C (K ,T) = S(T)e−rT−
√

S(T)Ke−rT

π

∫ ∞
0
R

(
e−iux

ϕ
(
u − i

2

)
u2 + 1

4

)
du

To deduce the formula a technique called Generalized
Fourier Transform is necessary. Which includes integration
with respect to a contour in the complex plane.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 18/81

The Andersen-Piterbarg Approach

This approach from Andersen, L. and Piterbarg, V. (2010a) takes a
Black formula as a control variate. Such approaches can be traced
back to Cont, R. and Tankov, P. (2004) where the control variate
technique was used for Call option pricing for models based on
exponential LÃ c©vy processes. The adjusted formula is:

C (K ,T) = BS(S(T),K ,T ,
√
V0)

+

√
S(T)Ke−rT

π

∞∫
0

R

(
e−iux

ϕBS(u − i
2)− ϕ

(
u − i

2

)
u2 + 1

4

)
du

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 19/81

The Joshi-Yang Approach

In Joshi, M. and Yang, C. (2011) the method of using control
variates has been analyzed more closely. The formula they
proposed is:

C (K ,T) = BS(S(T),K ,T , σBS)

+
e−rT

π

∫ ∞
0
R
(
e iux

ϕBS(u − i)− ϕ(u − i)

u(u − i)

)
du

In this setting σBS is a free parameter. Joshi, M. and Yang, C.
(2011) show methods for choosing this parameter. The control
variate approach can be combined with optimal dampening.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 20/81

Numerical Examples

We consider the following parameter sets for the numerical
examples:

S0 T K V0 Θ κ ν ρ

1 10 1.15 0.03 0.03 0.5 1 0.8
1 10 1.15 0.03 0.03 0.5 1 -0.8
1 10 0.85 0.04 0.04 0.3 1 0.1
1 12 1 0.04 0.03 0.3 1.2 0.1

We plot the Heston integrand (real part) for the approaches CM,
CV1, CV2, AP1 and AP2. Where CM is the standard Carr-Madan
approach, CV approaches are due to Joshi, M. and Yang, C.
(2011) and AP are due to Andersen, L. and Piterbarg, V. (2010a).
The difference between 1 and 2 is another dampening.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 21/81

Numerical Examples

Figure: Heston Integrands (real part) for Set 1 (top left), Set 2 (top
right), Set 3 (bottom left) and Set 4 (bottom right).

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 22/81

Integration Schemes and Bounds

To numerically calculate the integrals ...

... the integration region has to be truncated

Is there a general rule for choosing the truncation?
Transformation of the integration range leads to integration on
bounded intervals instead of unbounded ones.

... a numerical integration scheme is needed

Standard schemes such as Simpson, Gauss-Legendre, etc. can
be used.
Advanced adaptive schemes such as adaptive Gauss-Lobatto or
Coteda can be applied for suitable bounded intervals.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 23/81

Truncation and Transformation

For reasonable truncation we have to study the limiting
behaviour of the integrand.

There are two issues connected to the maturity of the option.

For very short dated options other issues might be important
than for long dated ones.

We call the critical maturity Tmin.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 24/81

Truncation and Transformation

We find for T > Tmin:

lim
u→+∞

1

u
log (ϕ(u − (α + 1)i)− ϕBS(u − (α + 1)i)) = −(C∞+iD∞)

with constants C∞ = V0+κθT
ν

√
1− ρ2, D∞ = V0+κθT

ν ρ

The limiting behaviour also suggests to take the following
transform of (−∞,+∞) to [0, 1]:

u(z) = − ln(z)

C∞

If an accuracy of ε is needed choose lb1 such that
−C∞lb1 − log(lb1) = log(ε)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 25/81

An Example

For instance taking this result we have for the integrand from the
Andersen-Piterbarg method:∫ +∞

lb

∣∣∣∣∣ϕBS(u − i
2)− ϕ(u − i

2)

u2 + 1
4

∣∣∣∣∣ du ≤ exp(−C∞lb)

∫ +∞

lb

du

u2

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 26/81

Truncation and Transformation

For T < Tmin apply a Taylor expansion around T = 0 to

log(ϕ) = −1

2
V0T (u2 + iu) + O(T 2).

This is due to the fact that exp(−D(lb1)) is not significantly
smaller than 1.

Choosing an accuracy level of ε we need

−1

2
V0lb2T − log(lb2) = log(ε)

We can choose a universal integration limit by
lb := max(lb1 , lb2).

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 27/81

Truncation or Transformation?

How to decide which method to apply?

Transformation is of most use with an advanced adapted
integration scheme.

Truncation can be applied with a standard integration scheme
and, thus, is often faster.

Numerical experiments show that a reasonable truncation
with a standard integration scheme can lead to the same level
of accuracy as applying transformation and a state-of-the-art
adaptive integration scheme.

For small time to maturity also take lb2 into account.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 28/81

Outline

1 Numerics for Stochastic Volatility Models
The Heston Model
Pricing using different Approaches
Python Code - The Heston Class

2 Gaussian Short Rate Models
Definition
Pricing
Path Simulation
The General Gaussian Short Rate Model
LGM Formulation of Gaussian Short Rate

3 Python - Hull-White and QuantLib

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 29/81

Heston Class in Python

import numpy as np

from numpy import sqrt

from numpy import zeros

from scipy import pi, exp, real, log

from scipy.stats import norm

from scipy.integrate import quad,quadrature, trapz

import math

import random

from scipy.stats import norm,t

from scipy.optimize import least_squares,fminbound

class Heston(object):

#Parameters of the class

def __init__(self,S=1,r=0.025,q=0.0,kappa=2,vLong=0.05,sigma=0.3,v0=0.02,rho=-0.7):

self.S = S

self.r = r

self.q = q

self.kappa = kappa

self.vLong = vLong

self.sigma = sigma

self.v0 = v0

self.rho = rho

...

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 30/81

Heston Characteristic Function

def heston_char_fkt(self,T,u):

gamma = self.kappa - 1j*self.rho*self.sigma*u

d = sqrt(gamma**2 + (self.sigma**2)*u*(u+1j))

g = (gamma - d)/(gamma + d)

C = (self.kappa*self.vLong)/(self.sigma**2)*((gamma-d)*T-

2*log((1 - g*exp(-d*T))/(1 - g)))

D = (gamma - d)/(self.sigma**2)*((1 - exp(-d*T))/

(1 - g*exp(-d*T)))

F = self.S*exp((self.r-self.q)*T)

return exp(1j*u*log(F) + C + D*self.v0)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 31/81

Heston Fundamental Transform

def heston_trafo(self,T,u):

F = self.S*exp((self.r-self.q)*T)

return exp(-1j*u*log(F))* self.heston_char_fkt(T,u)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 32/81

Heston Lews Pricer

def heston_call_lewis(self,K,T):

F = self.S*exp((self.r-self.q)*T)

x = log(F/K)

integrand = lambda k: real(exp(1j*k*x)/(k**2 + 1.0/4.0) * self.heston_trafo(T,k - 0.5*1j))

integral = quad(integrand, 0, math.inf)[0]

term1 = self.S * exp(-self.q*T)

term2 = sqrt(self.S*K)/pi * exp(-(self.r+self.q)*T/2) * integral

return term1 - term2

def heston_put_lewis(self,K,T):

price = self.heston_call_lewis(K,T) - self.S + K *exp((self.r-self.q)*T)

return price

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 33/81

Heston Joshi Yang Pricer

this is the Piterbarg version simply using sqrt(V0) as the BS vol

trapz provides a better way due to the exposition in Piterbarg but not implemented yet

def heston_call_joshi(self,K,T):

a = (self.v0 * T)**0.5

d1 = (log(self.S /K) + ((self.r-self.q) + self.v0 / 2) * T) / a

d2 = d1 - a

BSCall = self.S * exp(-self.q*T) * norm.cdf(d1) - K * exp(-self.r*T) * norm.cdf(d2)

F = self.S*exp((self.r-self.q)*T)

x = log(F/K)

integrand = lambda k: real(exp(1j*k*x)/(k**2 + 1.0/4.0) *

(self.heston_trafo(T,k - 0.5*1j)- exp(-0.5*T*self.v0*(k**2 + 1.0/4.0))))

integral = quadrature(integrand, 0, 150,tol=1e-6)[0]

return (BSCall - sqrt(self.S*K)/pi * exp(-(self.r+self.q)*T/2) * integral)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 34/81

Heston Piterbarg Pricer

def heston_call_piterbarg(self,K,T):

a = (self.v0 * T)**0.5

d1 = (log(self.S /K) + ((self.r-self.q) + self.v0 / 2) * T) / a

d2 = d1 - a

BSCall = self.S * exp(-self.q*T) * norm.cdf(d1) - K * exp(-self.r*T) * norm.cdf(d2)

logeps = log(0.00001)

F = self.S*exp((self.r-self.q)*T)

x = log(K/F)

umax1 = fminbound(self.heston_f1,0,1000,args=(logeps,T,))

umax2 = fminbound(self.heston_f2,0,1000,args=(logeps,T,))

umax = max(umax1,umax2)

X = np.linspace(0,umax,1000)

integrand = lambda k: real(exp(-1j*k*x)/(k**2 + 0.25) *(exp(-0.5*T*self.v0*(k**2 + 0.25))-

self.heston_trafo(T,k - 0.5*1j)))

integral = trapz(integrand(X),x=X)

return (BSCall + sqrt(F*K)/pi * exp(-self.r*T) * integral)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 35/81

Heston Helper Functions

def heston_f1(self,u,logeps,T):

return abs(-0.5* self.v0* T * u**2 - log(u) - logeps)

def heston_f2(self,u,logeps,T):

Cinf = (self.v0+self.kappa*self.vLong*T)/self.sigma*sqrt(1-self.rho**2)

return abs(-Cinf*u - log(u) - logeps)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 36/81

Heston Put Pricer

def heston_put_joshi(self,K,T):

price = self.heston_call_joshi(K,T) - self.S + K *exp((self.r-self.q)*T)

return price

def heston_put_piterbarg(self,K,T):

price = self.heston_call_piterbarg(K,T) - self.S + K *exp((self.r-self.q)*T)

return price

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 37/81

Heston QE Scheme

def heston_qestep(self,Xt,Vt,deltat,gamma1,gamma2,psiC):

new variance

k1 = exp(-self.kappa*deltat)

k2 = self.sigma**2 * k1 * (1-k1)/self.kappa

k3 = exp(self.kappa*deltat)*0.5*k2*(1-k1)*self.vLong

m = self.vLong +(Vt - self.vLong) * k1

s2 = Vt * k2 + k3

psi = s2/m**2

if psi <= psiC:

b2 = 2/psi-1 + (2/psi*(2/psi-1))**0.5

a = m/(1+b2)

Zv = norm.ppf(random.random())

#Non central Chi square variable aproximate sufficiently big value of Vt

Vnew = a*(Zv + b2**0.5)**2

elif psi > psiC:

p = (psi-1)/(psi+1)

beta = (1-p)/m

Uv = random.random()

if Uv <=p:

Vnew=0

elif Uv> p:

Vnew= log((1-p)/(1-Uv)) / beta

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 38/81

Heston QE Scheme - cont.

variables for the predictor-corrector step

K0 = -1*(self.rho*self.kappa*self.vLong)*deltat/self.sigma

K1 = gamma1*deltat*(-0.5+(self.kappa*self.rho/self.sigma))-(self.rho/self.sigma)

K2 = gamma2*deltat*(-0.5+(self.kappa*self.rho/self.sigma))+(self.rho/self.sigma)

K3 = gamma1*deltat*(1-self.rho**2)

K4 = gamma2*deltat*(1-self.rho**2)

Zv = norm.ppf(random.random()) # Gaussian N(0,1)

predictor-corrector step

Xnew = Xt + (self.r- self.q) *deltat + K0 + K1*Vt + K2*Vnew + ((K3*Vt+K4*Vnew)**0.5)*Zv

return [Xnew,Vnew]

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 39/81

Heston QE Scheme - cont.

def heston_qe(self,T,NSim,NT):

gamma1 = 0.5 #averaging factors for the discretivazion of Xt

gamma2 = 0.5 #averaging factors for the discretivazion of Xt

psiC = 1.5 #Threshold for the initiation of the two aproximate distribution of V(t+1 | Vt)

Nt = NT+1 # index 0 keeps the current values for S and V

deltat = T/NT

stores the paths

pathS = zeros([NSim,Nt])

pathV = zeros([NSim,Nt])

pathS[:,0] = self.S

pathV[:,0] = self.v0

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 40/81

Heston QE Scheme - cont.

for i in range(NSim):

Snew = np.log(self.S*exp(-self.q*T))

Vnew = self.v0

#print(Nt)

for j in range(NT):

new = self.heston_qestep(Snew,Vnew,deltat,gamma1,gamma2,psiC)

Snew = new[0]

Vnew = new[1]

pathS[i,j+1] = exp(Snew)

pathV[i,j+1] = Vnew

return pathS #, pathV]

#VT:Final Price minPrice, maxPrice: max and min of the path,

#path: list of all Price value along the path

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 41/81

Outline

1 Numerics for Stochastic Volatility Models
The Heston Model
Pricing using different Approaches
Python Code - The Heston Class

2 Gaussian Short Rate Models
Definition
Pricing
Path Simulation
The General Gaussian Short Rate Model
LGM Formulation of Gaussian Short Rate

3 Python - Hull-White and QuantLib

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 42/81

Outline

1 Numerics for Stochastic Volatility Models
The Heston Model
Pricing using different Approaches
Python Code - The Heston Class

2 Gaussian Short Rate Models
Definition
Pricing
Path Simulation
The General Gaussian Short Rate Model
LGM Formulation of Gaussian Short Rate

3 Python - Hull-White and QuantLib

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 43/81

Definition

We first consider a Gaussian model, called the (general) Gaussian
Short Rate. Let θ, κ and σ be deterministic functions. We
consider the short rate driven by (1), see for instance Brigo, D. and
Mercurio, F. (2006).

dr(t) = (θ(t)− κ(t)r(t))dt + σ(t)dW (t) (1)

r(0) = r0

Different specification of the models are eg. found in Andersen, L.
and Piterbarg, V. (2010b), namely

dr(t) = κ(t)(θ(t)− r(t))dt + σ(t)dW (t)

r(0) = r0

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 44/81

Definition

If θ(t) = θ, κ(t) = κ and σ(t) = σ the solution is

r(t) = f (s)e−κ(t−s) + θ
(

1− e−κ(t−s)
)

+ σ

∫ t

s
e−κ(t−u)dW (u).

(2)
In this case the first and the second moment can be computed

and are given by

E[r(t)|Fs] = r(s)e−κ(t−s) + θ
(

1− e−κ(t−s)
)

(3)

V[r(t)|Fs] =
σ2

2κ

[
1− e−2κ(t−s)

]
(4)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 45/81

Definition

Constant θ, κ and σ cannot fit the observed term structure

Choosing θ to be a deterministic function solves this problem

We take

θ(t) :=
∂2 ln(P(0, t))

∂t2
− κ∂ ln(P(0, t))

∂t
+
σ2

2κ

(
1− e−2κt

)
(5)

In (5) the market observed zero coupon bond prices P(0, t). In
practice the derivative ∂

∂t used to determine the rates has to be
calculated numerically.

r(t) = r(s)e−κ(t−s) +

∫ t

s
e−κ(t−u)θ(u)du + σ

∫ t

s
e−κ(t−u)dW (u)

(6)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 46/81

Definition

The first integral in (6) is given by

−∂ ln(P(0, t))

∂t
+
σ2

2κ2

(
1− e−κt

)2
+
∂ ln(P(0, s))

∂s
− σ2

2κ2

(
1− e−κs

)2
e−κ(t−s).

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 47/81

Another Representation

For practical reasons it is often easier to work with another variable
x instead of r and using the relation (7)

r(t) = x(t)− f (0, t). (7)

We provide the rationale for this at the end of this Chapter where
we consider the most general Gaussian Short Rate model. It is
possible to determine the zero coupon bond prices P(t,T)
explicitly. They are given by

P(t,T) = A(t,T)e−B(t,T)r(t) (8)

A(t,T) =
P(0,T)

P(0, t)
exp

(
−B(t,T)

∂ ln(P(0, t))

∂t
− σ2

4κ

(
1− e−2κT

)
B(t,T)2

)
B(t,T) =

1− e−κ(T−t)

κ

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 48/81

Paths for Term Structures

Figure: Simulated short rate paths for different spot rates. We let
r(0) = −0.01 (left) and r(0) = 0.01. The other parameters are κ = 0.2,
θ = 0.03 and σ = 0.02 (right).

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 49/81

Simulated Term Structures

Figure: Two simulated term structures for the Gaussian Short Rate Model
with κ = 0.2 (left) and κ = 0.5 (right), θ = 0.03, σ = 0.02 and r = 0.01

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 50/81

Outline

1 Numerics for Stochastic Volatility Models
The Heston Model
Pricing using different Approaches
Python Code - The Heston Class

2 Gaussian Short Rate Models
Definition
Pricing
Path Simulation
The General Gaussian Short Rate Model
LGM Formulation of Gaussian Short Rate

3 Python - Hull-White and QuantLib

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 51/81

Pricing I - Zero Coupon Options

For eg. calibration it is useful to have fast valuation formulae. Call
and Put options on Zero Coupon Bonds, (9) and (10) are used for
pricing. We have for times S ,T and strike K

V ZCCall(t) = KP(t, S)N (−h)− P(t,T)N (h − Σ) (9)

V ZCPut(t) = KP(t,T)N (−h + Σ)− P(t,S)N (−h) (10)

with

Σ := σ

√
1− e−2κ(T−t)

2κ
B(T , S), h =

1

Σ
ln

(
P(t, S)

P(t,T)K

)
+

Σ

2
.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 52/81

Pricing II - Caplets/Floorlets

Caplets and Floorlets are valued using (11), (12). It is not possible
to find the corresponding prices if the functions κ(t) and σ(t) are
non-constant. Let us consider the pricing of basic options. Let
T := {t0, . . . , tN = T} be a discretisation of [0,T].

V Cap(K ,T) =
N∑
i=1

[P(t, ti−1)N (−hi + σi)− (1 + Kτi)P(t, ti)N (−hi)] ,

with the volatility

σi = σ

√
1− e−2κ(ti−1−t)

2κ
B(ti−1, ti), hi =

1

σi
log

(
P(t, ti)(1 + Kτi)

P(t, ti−1)

)
+
σi
2
.

The corresponding value for the Floor is

V Floor(K ,T) =
N∑
i=1

[P(t, ti)N (hi)− (1 + Kτi)P(t, ti−1)N (hi − σi)] .

Each Caplet/Floorlet is a Put/Call option on a Zero Coupon
Bond. This means we can reuse the corresponding formulas.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 53/81

Pricing III - Change of Measure

For calculation we wish to simplify the expression the pricing of a
ZC Call

E
[
e−

∫ T
t r(s)ds(P(T , S)− K)+|F(t)

]
We change the numeraire and resort to the pricing equation

P(t,T)ET [(P(T , S)− K)+|F(t)]

We find for the dynamic of r̃ in the T -Fwd measure:

dr̃(t) = [−B(t,T)σ2 − ar̃(t)]dt + σdW T (t)

Thus, the solution is given by

r̃(t) = r̃(s)e−a(t−s) −MT (s, t) + σ

∫ t

s
e−a(t−u)dW T (u)

with

MT (s, t) =
σ2

a2

[
1− e−a(Tt)

]
− σ2

2a2

(
e−a(T−t) − e−a(T+t−2s)

)
Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 54/81

Pricing IV - Caps/Floors

In the T -Forward measure the short rate is also Gaussian but with
a different mean. We have:

ET [r(t)|F(s)] = r̃ e−a(t−s) −MT (s, t) + f M(0, t) +
σ2

2a

(
1− e−a(t−s)

)2

VT [r(t)|F(s)] =
σ2

2a

(
1− e−2a(t−s)

)
Let us consider the pricing of a Cap. We calculate the expectation

given by

E
[
e−

∫ Ti
t r(s)dsNτi (L(Ti−1,Ti)− K)+|F(t)

]
Using the tower property of conditional expectations and the

definition of the forward rate (in a single curve setting!) we find:

E
[
e−

∫ Ti
t r(s)ds(1− (1 + τiK)P(Ti−1,Ti))+|F(t)

]
Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 55/81

Pricing V - Caps/Floors

The latter expression allows to view a Cap with strike K on a
forward rate as an option on a Zero Coupon Bond with strike
(1 + τiK)−1 and notional N(1 + τiK). The pricing formulae for
Caps and Floors with strike K and maturity T become:

V Cap =
N∑
i=1

(1 + τiK)V ZCPut(t,Ti−1,Ti ,
1

1 + τiK
) (11)

V Floor =
N∑
i=1

(1 + τiK)V ZCCall(t,Ti−1,Ti ,
1

1 + τiK
) (12)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 56/81

Pricing VI - Swaptions

Formulae (14) and (15) are for swaptions but we need to apply
Jamshidian Trick, that needs an additional quantity r∗. Consider
the payoff N(SR − K)+A(T ,TN). Let r∗ be the solution of

N∑
i=1

ciA(T ,Ti)e
−B(T ,Ti)r

∗
K = 1 (13)

With r∗K the T maturity payer/receiver swaption prices are

V PSwtion(t) = N
N∑
i=1

ciV
ZCPut(t,T ,Ti ,A(t,Ti)e

−B(t,Ti)r
∗
K)(14)

V RSwtion(t) = N
N∑
i=1

ciV
ZCCall(t,T ,Ti ,A(t,Ti)e

−B(t,Ti)r
∗
K)(15)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 57/81

Outline

1 Numerics for Stochastic Volatility Models
The Heston Model
Pricing using different Approaches
Python Code - The Heston Class

2 Gaussian Short Rate Models
Definition
Pricing
Path Simulation
The General Gaussian Short Rate Model
LGM Formulation of Gaussian Short Rate

3 Python - Hull-White and QuantLib

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 58/81

Path Simulation I

Ex,i := E[x(ti)|x(ti−1)] = e
−
∫ ti
ti−1

κ(s)ds
x(ti−1) +

∫ ti

ti−1

e−
∫ ti
s κ(u)duy(s)ds

EI,i := E[I (ti)|I (ti−1), x(ti−1)] = I (ti−1)− x(ti−1)G(ti−1, ti)

−
∫ ti

ti−1

∫ u

ti−1

e−
∫ u
s κ(v)dv y(s)dsdu

Vx,i := V[x(ti)|x(ti−1)] =

∫ ti

ti−1

(
e−

∫ ti
s κ(u)du

σ(s)

)2

ds

VI,i := V[I (ti)|I (ti−1), x(ti−1)] = 2

∫ ti

ti−1

∫ u

ti−1

e−
∫ u
s κ(v)dv y(s)dsdu − y(ti−1)G(ti−1, ti)

2

Ci := COV [x(ti), I (ti)|x(ti−1), I (ti−1)]

=

∫ ti

ti−1

∫ u

ti−1

σ(u)2e−2
∫ u
s κ(v)dv e−

∫ ti
s κ(v)dv dsdu

ρi :=
Ci√

VI,i
√

Vx,i

with G(t,T) =
∫ T
t e−

∫ u
t κ(s)dsdu.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 59/81

Path Simulation II

With the notation introduced above and let Z1,Z2 ∼ N (0, 1)
independent standard normal variates we use

r(ti) = Ex +
√

VxZ1

I (ti) = EI +
√

VI (ρiZ1 +
√

1− ρ2
i Z2)

to jointly evolve the dynamic of the short rate and the discount
factor.
We assume that the corresponding integrals can be evaluated. Eg.
for using piecewise constant functions this can be done by
adjusting the simulation grid to take into account the periods
where the parameters stay constant.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 60/81

Outline

1 Numerics for Stochastic Volatility Models
The Heston Model
Pricing using different Approaches
Python Code - The Heston Class

2 Gaussian Short Rate Models
Definition
Pricing
Path Simulation
The General Gaussian Short Rate Model
LGM Formulation of Gaussian Short Rate

3 Python - Hull-White and QuantLib

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 61/81

Definition

For a general Gaussian Short Rate model (GSR) to match the
initial term structure the function φ is:

φ(t) =
1

κ(t)

∂f (0, t)

∂t
+ f (0, t) +

1

κ(t)

∫ t

0
e−2

∫ t
u κ(s)dsσ(u)2du

Using r = x − f (0, t) we find

dx(t) = (

∫ t

0
e−2

∫ t
u κ(s)dsσ(u)2du︸ ︷︷ ︸
y(t)

−κ(t)r(t))dt+σ(t)dW (t), x(0) = 0

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 62/81

Pricing

The bond pricing formulae are:

P(0,T) =
P(0,T)

P(0, t)
exp

(
−x(t)G (t,T)− 1

2
y(t)G (t,T)2

)
G (t,T) =

∫ T

t
e−

∫ t
u κ(s)dsdu

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 63/81

Outline

1 Numerics for Stochastic Volatility Models
The Heston Model
Pricing using different Approaches
Python Code - The Heston Class

2 Gaussian Short Rate Models
Definition
Pricing
Path Simulation
The General Gaussian Short Rate Model
LGM Formulation of Gaussian Short Rate

3 Python - Hull-White and QuantLib

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 64/81

LGM Formulation

The Linear Gauss Markov (LGM) formulation of the Gaussian
Short Rate is due to Hagan, P. and Woodward, D. (1999). They
consider (16)

dX = a(t)dW (t). (16)

with solution X (t) and transition probability density

p(t, x ;T ,X) = P (X < X (T) ≤ X + dX |X (t) = x) (17)

=
1√

2π∆ξ
exp

(
−(X − x)2

2∆ξ

)
with

∆ξ := ∆ξTt := ξ(T)− ξ(t), ξ(t) :=

∫ t

0
a(s)2ds

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 65/81

Pricing in LGM

Specifying a numeraire -any positive quantity. They propose to use

N(t, x) =
1

R(0, t)
exp

(
H(t)x +

H(t)2ξ(t)

2

)
(18)

In (18) N is a function of t and x .
Finally, we need the pricing equation. For payoff V at time T with
state x we consider (19)

V (t, x) = N(t, x)E
[
V (T ,X)

N(T ,X)

∣∣∣∣X (t) = x

]
(19)

=
N(t, x)√

2π∆ξ

∫
V (T ,X)

N(T ,X)
exp

(
−(X − x)2

2∆ξ

)
dX

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 66/81

Pricing

Sometime instead of using the pricing equation (19) it is better to
consider already discounted prices and, thus, consider

Ṽ (t, x) =
V (t, x)

N(t, x)

The pricing equation is (20).

V (t, x) =
1√

2π∆ξ

∫
V (T ,X) exp

(
−(X − x)2

2∆ξ

)
dX (20)

We use the same notation for standard and deflated prices but we
remark which is the specific setting where appropriate! First, it is
not necessary that the process X is one-dimensional. Second, the
pricing equation is the standard martingale pricing and, thus,
strictly speaking not an ingredient of the LGM model. Thrid, the
functions a(t), H(t) and, thus, ξ(t) have to be determined which
is central to the calibration to market data.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 67/81

LGM and GSR

κ(t) = −H ′′(t)

H ′(t)
, σ(t) = H ′(t)

√
ξ′(t) (21)

Using these two functions we can consider the corresponding
Gaussian Short Rate model. Thus, any LGM model specifies some
Gaussian Short Rate model by (21).
Now, the other way round, starting with an Hull-White model we
set:

H(t) = c1

∫ t

0
exp

(
−
∫ s

0
κ(u)du

)
ds + c2 (22)

and

ξ(t) =
1

c2
1

∫ t

0
σ2(s) + exp

(
2

∫ s

0
κ(u)du

)
ds (23)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 68/81

LGM and GSR

Thus, (22) and (23) specify some LGM model with c1 and c2 are
arbitrary positive constants. To clarify the connection of Gaussian
Short Rate and LGM models further let us consider the
transformations:

(I)
H(t) → c1H(t)

ξ(t) → c−1
2 ξ(t)

; (II)
H(t) → H(t) + c1

ξ(t) → ξ(t)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 69/81

LGM and GSR

Let the swap rate according to a given payment schedule

TY = {TY
m ,T

Y
m+1, . . . ,T

Y
n }

be SRmn. This is against Libor rates L(Ti ,Ti+1) for based on the
schedule

TLibor = {T L
m = TY

m ,T
L
m+1, . . . ,T

L
N = TY

n }
The last payment on the fixed and Libor leg might include the

nominal.
We have for the fix leg:

V Swap
Fix (t, x) = SR f

n∑
j=m+1

τYj P(t, x ,TY
j)

For the floating leg we have (eventually adjusted for a
deterministic basis spread):

V Swap
Float (t, x) = P(t, x ,T L

m)
N∑

j=m+1

τLj P(t, x ,T L
j)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 70/81

Multiple Curves

In a multiple curves setting we have

V Swap
Float (t, x) =

N∑
j=m+1

τLj L(t, x ,Ti ,Ti+1)P(t, x ,T L
j)

with L being a Libor index and D being the OIS discount factor.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 71/81

Pricing - Black type Caplet/Floorlet Formula

V Floorlet = (1 + τ01K)P(0,T1)N (d f
1)− P(0,T0)N (d f

2)

V Caplet = P(0,T0)N (dc
1)− (1 + τ01K)P(0,T1)N (dc

2)

with

d f
1,2 =

log
(

1+τ01K
1+τ01L

)
± 1

2 (H1 − H0)2ξT

(H1 − H0)
√
ξT

dc
1,2 =

log
(

1+τ01L
1+τ01K

)
± 1

2 (H1 − H0)2ξT

(H1 − H0)
√
ξT

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 72/81

Pricing - Black type Caplet/Floorlet Formula

The formulae for a Floorlet/Caplet can be seen as special cases of
a Swaption. To this end we analyze the derivation in more detail.
The payoff of a Receiver Swaption is given by

V RSwtion(t) =

(
n∑

i=m+1

τiKP(T , x ,Ti) + P(T , x ,Tn)− P(T , x ,Tm)

)+

Thus, using the LGM formalism we have

V RSwtion(0) =
1

2πξ(T)

∫
exp

(
− X 2

2ξ(T)

)
V Swptn

Rec (T ,X)dX

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 73/81

Pricing - Black type Caplet/Floorlet Formula

The latter integral can be evaluated and is given by

1√
2πξ(T)

∫
exp

(
− y2

2ξ(T)

)
×
[n∑
i=m+1

τiKP(0,Ti)e
−(Hi−H0)y− (Hi−H0)2ξ(T)

2

+ P(0,Tn)e−(Hn−H0)y− (Hn−H0)2ξ(T)
2 − P(0,Tm)

]+
dy

To state a Black-Scholes type equation we need to find y∗ with:

n∑
i=m+1

τiKP(0,Ti)e
−(Hi−H0)y∗− (Hi−H0)2ξ(T)

2

+P(0,Tn)e−(Hn−H0)y∗− (Hn−H0)2ξ(T)
2 = P(0,Tm)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 74/81

Pricing - Black type Caplet/Floorlet Formula

Using y∗ for the integration limits we find

V RSwtion(0) =
n∑

i=m+1

τiKP(0,Ti)N (di)+P(0,Tn)N (dn)−P(0,Tm)N (d)

with

di =
y∗ + (Hn − H0)ξ(T)√

ξ(T)
, d =

y∗√
ξ(T)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 75/81

Pricing - Black type Swaption Formula

For the Payer Swaption we have

V PSwtion(0) = −
n∑

i=m+1

τiKP(0,Ti)N (−di)− P(0,Tn)N (−dn)

+P(0,Tm)N (−d)

= V RSwtion(0) + P(0,Tm)−
n∑

i=m+1

τiKP(0,Ti)− P(0,Tn)

y∗ is computed by root searching. For the latter the derivatives
need to be calculated but this can be done analytically for this
model parametrisation.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 76/81

Outline

1 Numerics for Stochastic Volatility Models
The Heston Model
Pricing using different Approaches
Python Code - The Heston Class

2 Gaussian Short Rate Models
Definition
Pricing
Path Simulation
The General Gaussian Short Rate Model
LGM Formulation of Gaussian Short Rate

3 Python - Hull-White and QuantLib

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 77/81

Hull-White with QuantLib

import QuantLib as ql

from collections import namedtuple

import math

today = ql.Date(15, ql.November, 2019);

settlement= ql.Date(19, ql.November, 2019);

ql.Settings.instance().evaluationDate = today;

sr = 0.003

term_structure = ql.YieldTermStructureHandle(

ql.FlatForward(settlement,sr,ql.Actual365Fixed())

)

index = ql.Euribor1Y(term_structure)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 78/81

Hull-White with QuantLib

CalibrationData = namedtuple("CalibrationData",

"start, length, volatility")

data = [CalibrationData(1, 5, 0.1148),

CalibrationData(2, 4, 0.1108),

CalibrationData(3, 3, 0.1070),

CalibrationData(4, 2, 0.1021),

CalibrationData(5, 1, 0.1000),

CalibrationData(1, 9, 0.1108),

CalibrationData(2, 8, 0.1070),

CalibrationData(3, 7, 0.1021),

CalibrationData(4, 6, 0.1000),

CalibrationData(5, 5, 0.1108),

CalibrationData(6, 4, 0.1070),

CalibrationData(7, 3, 0.1021),

CalibrationData(8, 2, 0.09),

CalibrationData(9, 1, 0.08)]

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 79/81

Hull-White with QuantLib

def create_swaption_helpers(data, index, term_structure, engine):

swaptions = []

fixed_leg_tenor = ql.Period(1, ql.Years)

fixed_leg_daycounter = ql.Actual360()

floating_leg_daycounter = ql.Actual360()

for d in data:

vol_handle = ql.QuoteHandle(ql.SimpleQuote(d.volatility))

helper = ql.SwaptionHelper(ql.Period(d.start, ql.Years),

ql.Period(d.length, ql.Years),

vol_handle,

index,

fixed_leg_tenor,

fixed_leg_daycounter,

floating_leg_daycounter,

term_structure

)

helper.setPricingEngine(engine)

swaptions.append(helper)

return swaptions

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 80/81

Hull-White with QuantLib

volstepDates = []

for i in range(8):

volstepDates.append(today + ql.Period(i+1,ql.Years))

print(volstepDates[i])

volatilities = []

vols = [0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02]

for vol in vols:

volatilities.append(ql.QuoteHandle(ql.SimpleQuote(vol)))

reversions = []

revs = [0.03]

for rev in revs:

reversions.append(ql.QuoteHandle(ql.SimpleQuote(rev)))

model = ql.Gsr(term_structure, volstepDates, volatilities, reversions);

engine = ql.Gaussian1dJamshidianSwaptionEngine(model)

swaptions = create_swaption_helpers(data, index, term_structure, engine)

output for test

ff = [s.modelValue() for (k,s) in enumerate(swaptions)]

ff

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 81/81

Albrecher, H. and Mayer P. and Schoutens, W. and Tistaert, J. The Little Heston Trap. Wilmott Magazine, 3,
2006.

Andersen, L. and Piterbarg, V. Interest Rate Modeling - Volume I: Foundations and Vanilla Models. Atlantic
Financial Press, 2010a.

Andersen, L. and Piterbarg, V. Interest Rate Modeling - Volume II: Term Structure Models. Atlantic Financial
Press, 2010b.

Attari, M. Option pricing using fourier transforms: A numerically efficient simplification. Working Paper, Charles
River Associates, 2004.

Brigo, D. and Mercurio, F. Interest Rate Models - Theory and Practice, 2nd ed. Springer, Berlin, Heidelberg, New
York, 2006.

Carr, P. and Madan, D. Option Valuation using the Fast Fourier Transform. Journal of Computational Finance, 2
(4):61–73, 1999.

Cont, R. and Tankov, P. Financial Modelling with Jump Processes. Chapman & Hall, 2004.

Hagan, P. and Woodward, D. Equivalent Black Volatilities. Applied Mathematical Finance, 6(3), 1999.

Heston, S. A closed form solution for options with stochastic volatility with applications to bond and currency
options. Rev. Fin. Studies, pages 327–343, 1993.

Joshi, M. and Yang, C. Fourier Transforms, Option Pricing and Controls. Preprint 223 -The University of
Melbourne, 2011.

Kienitz, J. and Wetterau, D. Financial Modeling - Theory, Implementation and Practice - (with Matlab source).
Wiley, 2012.

Lewis, A. A simple option formula for general jump-diffusion and other exponential Lévy processes. Preprint, 2001.
URL http://www.optioncity.net,WorkingPaper.

Lord, R. and Kahl, C. Complex logarithms in Heston-like models. Preprint, 2005. URL
http://www.chritiankahl.com/publications/complexlogarithmsheston.pdf.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 81/81

http://www.optioncity.net, Working Paper
http://www.chritiankahl.com/publications/complexlogarithmsheston.pdf

	Numerics for Stochastic Volatility Models
	The Heston Model
	Pricing using different Approaches
	Python Code - The Heston Class

	Gaussian Short Rate Models
	Definition
	Pricing
	Path Simulation
	The General Gaussian Short Rate Model
	LGM Formulation of Gaussian Short Rate

	Python - Hull-White and QuantLib
	bibliography
	References

