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Disclaimer

This presentation and any accompanying material are being provided solely for information and general illustrative
purposes. The author will not be responsible for the consequences of reliance upon any information contained in or
derived from the presentation or for any omission of information therefrom and hereby excludes all liability for loss
or damage (including, without limitation, direct, indirect, foreseeable, or consequential loss or damage and
including loss or profit and even if advised of the possibility of such damages or if such damages were foreseeable)
that may be incurred or suffered by any person in connection with the presentation, including (without limitation)
for the consequences of reliance upon any results derived therefrom or any error or omission whether negligent or
not. No representation or warranty is made or given by the author that the presentation or any content thereof will
be error free, updated, complete or that inaccuracies, errors or defects will be corrected.

The views are solely that of the author and not of his employer, Quaternion Risk Management GmbH. The
Chatham House rules apply.

The presentation may not be reproduced in whole or part or delivered to any other person without prior permission
of the author.
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Hedging & Deep Learning

Hedging as Sell Side Business Model

Issue a derivative X and sell to clients

Replicate payoff of derivative X by a portfolio with a trading
strategy φ that only trades in the underlying S

Being long the portfolio and short the derivative is
(theoretically) riskless =⇒ make profits in fees

Deep Learning

Machine Learning using neural networks is called Deep
Learning, if it has a “high” number of hidden layers in order
to capture non-linearities (depending on the context “high”
means just “> 2”)

“Deep Hedging” is the idea to use deep learning to find the
hedging strategy φ
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Sources and References

Deep Hedging is an active field of research. This presentation is
based mostly on the following sources:

Black/Scholes model: M. Groncki’s blog post & notebook
(many thanks for allowing us to use it for this talk)
https://ipythonquant.wordpress.com/2018/06/05/

option-hedging-with-long-short-term-memory-recurrent-neural-networks-part-i/

Heston model: Bühler, Gonon, Teichmann, Wood. Deep
Hedging
https://arxiv.org/abs/1802.03042

ETH Lectures (Teichmann)
https://people.math.ethz.ch/~jteichma/index.php?content=teach_mlf2019

LSTM Intro (N. Nowaczyk)
https://github.com/niknow/machine-learning-examples
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Recap: Math Finance Setup

Definition (standard market)

Let (Ω,F ,P) be a probability space and let

dSt = µt(St)dt + σt(St)dWt

be an Ito process of tradable assets S1, . . . ,Sp, such that µ ∈ L1,
σ ∈ L2 (pathwise). Here, Wt is a multi-variate Brownian motion.
Let F := (Ft)t≥0 be the augmented natural filtration generated by
Wt . We assume that N := S1 is the chosen numeraire and that all
deals mature at a maximum maturity T > 0.
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Self-financing Trading Strategies

Definition (trading strategy)

In a standard market with assets S1, . . . ,Sp, a trading strategy is a
predictable adapted process φ : Ω× [0,T ]→ IRp. The process

Π(t) := φ(t)S(t) :=

p∑
i=1

φi (t)Si (t),

is the associated portfolio value process. A strategy φ is called
self-financing if

dΠ(t) = φ(t)dS(t).
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Arbitrage

Definition (arbitrage opportunity)

A trading strategy φ is an arbitrage opportunity, if its portfolio
value process Π satisfies

Π(0) = 0, ∃0 ≤ t ≤ T : Π(t) ≥ 0 a.s. and P[Π(t) > 0] > 0.

A market is arbitrage free, if there exists no arbitrage opportunities.

Theorem

If there exists an equivalent martingale measure Q, then the
market is arbitrage free.
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Replication & Completeness

Definition

A contigent claim / derivative is an FT -measurable random
variable VT . A trading strategy φ replicates VT if its associated
value process Π satisfies ΠT = VT . A market is complete if every
claim can be replicated.

Theorem

If there exists a unique equivalent martingale measure Q, then the
market is arbitrage free and complete.

The strategy φ can be used to hedge the derivative as
Πt =

∑p
i=1 φ

i
tS

i
t = Vt .
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Example 1: Black/Scholes model

Definition

The 2-asset market comprising of a deterministic bank account and
a GBM for a single stock,

dBt = rBtdt, dSt = µStdt + σStdWt ,

is called Black/Scholes model.

Theorem

The Black/Scholes model is arbitrage-free and complete. It has
the explicit representation

Bt = B0e
rt , St = S0e

(µ−σ
2

2 )t+σWt
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Example 1: Hedging Options in a Black/Scholes model

Theorem

The price of a European call option CT = (ST − K )+ with strike
K in the Black/Scholes model is given by

Ct = Φ(d1)St − Φ(d2)e−r(T−t)K

d1 = (ln(StK ) + (r + σ2

2 )(T − t))/(σ
√
T − t),

d2 = d1 − σ
√
T − t,

where Φ is the standard normal cdf. Furthermore,

∆t =
∂Ct

∂St
= Φ(d1).

is the amount of stock necessary to replicate Ct .
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Example 2: Heston Model Definition

Definition

The Heston model for a stock price is defined by

dS1
t =

√
VtStdBt , S1

0 = s0,

dVt = α(b − Vt)dt + σ
√

VtdWt ,V0 = v0,

where α, b, σ, s0, v0 > 0 and Bt , Wt are Brownian motions
correlated with ρ ∈ [−1, 1].

The stochastic volatility Vt cannot be traded directly. Thus, we
introduce an idealized variance swap on it with price process

S2
t := EQ

[ ∫ T

0
Vsds | FH

t

]
, FH

t = σ((S1
s ,Vs), 0 ≤ s ≤ t)
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Example 2: Hedging Options in a Heston model

The variance swap can be written as

S2
t =

∫ t

0
Vsds + L(t,Vt), L(t, v) =

v − b

α
(1− e−α(T−t) + b(T − t)).

Let g : R→ R be the European payoff of an option. By the
Markov property, its price process can be written as
Ct = EQ[g(S1

t ) | FH
t ] = u(t,S1

t ,Vt). We obtain

g(S1
T ) = q +

∫ T

0
φ1
tdS

1
t +

∫ T

0
φ2
tdS

2
t .

where q = EQ[g(S1
T )], φ1

t = ∂su(t,S1
t ,Vt), φ2

t = ∂vu(t,S1
t ,Vt)

∂vL(t,Vt)
.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 15/56



Outline

1 Introduction
Recap of Math Finance Setup & Notation
Hedging: Theory vs. Practice
Risk Measures
General Hedging Problem

2 Recurrent Neural Networks (RNN)
Predicting Sequences
Long-Term-Short-Term Networks (LSTM)

3 Deep Hedging
Black/Scholes Numerical Results
Heston Results

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 16/56



Practical Problem 1: Trading is not continuous

In theory, continuous trading is and a bank can short the option
Ct and hedge it by going long the replication portfolio Π with the
trading strategy φ (for both Black/Scholes and Heston). This is
called Delta Hedging and would result in a net position of:

−Ct + Πt = 0.

In reality, continuous trading is not possible and we have to work
on a discretized grid 0 = t0 < . . . < tn = T leaving us with a
hedge error at maturity of

−CT + p0 +
n−1∑
k=0

φtk (Sk+1 − Sk)︸ ︷︷ ︸
=:(S ·φ)T

,

where p0 is an initial injection of cash into the trading strategy φ.
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Practical Problem 2: Incomplete Markets & Frictions

In theory, we have assumed that the market is complete and thus
every derivative can be perfectly hedged and that all trading is
frictionless.
In reality, a market might not be complete and all trading comes
with friction such as transaction costs ck . Thus, this leaves us with
a total portfolio value of

PLT (Z , p0, φ) := −CT + p0 + (S · φ)T −
n∑

k=0

ck(φtk − φtk−1
)︸ ︷︷ ︸

=:CT (φ)

,

and we can no longer assume that this will balance out to zero,
but we can minimize this random variable in some metric!
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Convex Risk Measure Definition

Definition

Let (Ω,F ,P) be a probability space and let X be the space of all
real valued random variables on Ω. Then ρ : X → IR is a convex
risk measure, if for any X ,X1,X2 (representing portfolio assets):

1 Monotone decreasing: X1 ≥ X2 =⇒ ρ(X1) ≤ ρ(X2).

2 Convex:
∀α ∈ [0, 1] : ρ(αX1 + (1− α)X2) ≤ αρ(X1) + (1− α)ρ(X2).

3 Cash-Invariant: ∀c ∈ IR : ρ(X + c) = ρ(X )− c .

The measure ρ is called normalized if ρ(0) = 0.
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Convex Risk Measures and Hedge Error

Theorem

Let ρ be a convex risk measure and H be the space of all
constrained trading strategies. If CT (·) and H are convex, then

X 7→ π(X ) := inf
φ∈H

ρ(X + (φ · S)T − CT (φ))

is a convex risk measure as well.
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Examples: Expected Shortfall

Definition

Let (Ω,F ,P) be a probability space. For any α ∈ [0, 1[, the risk
measure

X 7→ ρ(X ) := ES(X ) :=
1

1− α

∫ 1−α

0
VaRγ(X )dγ

is called expected shortfall with risk-aversion level α. Here,

VaRγ(X ) := inf{m ∈ IR : P(X < −m) ≤ γ}

is the Value-at-risk with confidence level γ.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 22/56



Outline

1 Introduction
Recap of Math Finance Setup & Notation
Hedging: Theory vs. Practice
Risk Measures
General Hedging Problem

2 Recurrent Neural Networks (RNN)
Predicting Sequences
Long-Term-Short-Term Networks (LSTM)

3 Deep Hedging
Black/Scholes Numerical Results
Heston Results

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 23/56



Hedging Problem

Let S = (S1, . . . ,Sp) be tradable assets in a market and X be the
payout of a derivative. We assume that 0 = t0 < . . . < tn = T are
the distinct points at which trading is possible. We want to find a
trading strategy φ = (φ0, . . . , φn), φj ∈ IRk , such that φ attains

π(X ) = inf
φ∈H

ρ(X + (φ · S)T − CT (φ))

for some convex risk measure ρ.
Idea: Generate realizations of S and “learn” the trading strategy φ
at each point in time tk .

Problem: φt depends on t!
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Problem context

Usually, an artificial neural network (ANN) needs an input X to
predict an output y . How to use ANNs if the input is a sequence
Xt and the output is a sequence yt?

1 Use a big NN with either fixed length vector input/outputs
Xt1 , . . . ,Xtn and yt1 , . . . , ytn or input/output pairs (X , t),
(y , t).

2 Use a separate NN for each point tk .

3 Use a RNN!
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Idea 1: Train one huge network

Outputs: y0 y1 . . . yn

Network: NN

OO__
99

. . .

Inputs: X0

??

X1

OO

. . . Xn

ee
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Idea 1: Pros and Cons

Pros

easy to understand

straight-forward to implement

Cons

resulting NN might need to be huge

training set required to train the network might be huge

resulting computational power required might be huge
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Idea 2: Train one Network for each element

Outputs: y0 y1 . . . yn

Networks: NN0

OO

NN1

OO

. . . NNn

OO

Inputs: X0

OO

X1

OO

. . . Xn

OO
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Idea 2: Pros and Cons

Pros

resulting NN can be much smaller

still easy to understand and straight-forward to implement

Cons

the NN in later positions of the sequences might struggle to
make accurate predictions

predictions are made by independent NN, thus the output
might suffer from consistency issues
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Origin of this approach: NLP

Assume we have a text and the quantity to predict is the last
word in the sentence. If the second sentence is: Today is
Tuesday, this can be quite hard. But if the first sentence is:
Yesterday was Monday, then this becomes a lot easier! Thus
a chain of networks can be much more efficient if information
is transported through time. (Short Term Memory)

However, if the t = 12 sentence is Roses are red, then the
information that the predicted word at t = 1 was Tuesday is
not helpful and might actually be harmful. (Long Term
Memory)

Making the prediction at t depend on everything before, blows
up the size of the networks. Thus, one needs an efficient way
to manage short term and long term memory in these
networks to make accurate predictions!
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Solution: Cell States

Outputs: y0

��

y1

��

. . . yn

Networks: NN

OO

C0 //
NN

OO

C1 // . . .
Cn−1

//
NN

OO

Inputs: X0

OO

X1

OO

. . . Xn

OO
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Formal Definition of Parameters

Definition (LSTM)

A Long-Term-Short-Term-Memory neural network is a tuple
LSTM = LSTM(W ,U, b, τ, σ) consisting of

a number m of units and a number k of features,

a 4-tuple W of matrices Wi ,Wf ,Wc ,Wo ∈ Rk×m called
input, forget, cell and output kernels,

a 4-tuple U of matrices Ui ,Uf ,Uc ,Uo ∈ Rm×m called input,
forget, cell and output recurrent kernels,

a 4-tuple b of vectors bi , bf , bc , bo ∈ Rm called input, forget,
cell and output bias,

two functions σ, τ : R→ R called activation and recurrent
activation.

None of the parameters are time-dependent!
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LSTM Feedforward

Definition

Let LSTM = LSTM(W ,U, b, τ, σ) and T ∈ N. Any sequence
x = (x1, . . . , xT ), xt ∈ Rk , is called an input sequence. We
recursively define:

input: it := τ(xt �Wi + ht−1 � Ui + bi ) ∈ Rm, (1)

forget: ft := τ(xt �Wf + ht−1 � Uf + bf ) ∈ Rm, (2)

candidate: c̃t := σ(xt �Wc + ht−1 � Uc + bc) ∈ Rm, (3)

output: ot := τ(xt �Wo + ht−1 � Uo + bo) ∈ Rm, (4)

cell: ct := ft • ct−1 + it • c̃t ∈ Rm, (5)

carry: ht := otτ(ct) ∈ Rm. (6)

Conventions: All vectors are row vectors, c0 := 0, h0 := 0, �
denotes matrix-vector multiplication, • denotes the element-wise
multiplication of vectors, σ and τ are applied elementwise. Finally,
the function FT : Rk×T → Rm, x = (x1, . . . , xT ) 7→ hT is called,
the feedforward of LSTM of length T .
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LSTM Gate Representation
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Remarks

Recurrent Neural Networks in general and LSTMs in particular
exist in many different variants.

The internal structure of every node is a neural network and in
principle, one can play around with any choice of architecture.

Popular choices are hidden layers or different activation
functions.

The choices made above are in line with the keras

implementation of LSTM.
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Deep Hedging

Deep Hedging is the technique of applying a recurrent neural
network, for example the LSTM, to obtain a trading strategy
φ of portfolio hedging a derivative security by using
realizations of the underlying S as inputs.

By giving the training algorithm of the neural network a risk
metric such as ES as the cost function, the neural network will
solve the problem of finding the optimal hedging strategy
automatically. Thus, this is an instance of unsupervised
learning.

Generating the sample paths of the underlying is a non-trivial
finance problem, which needs to be solved by Monte Carlo
methods as usual.
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Black/Scholes Setup

The easiest example is provided by using an LSTM to learn
the ∆-hedging strategy of a Call Option in the Black/Scholes
model.

There is a nice blog post and a Jupyter notebook by M.
Groncki on this topic (thanks for allowing us to use it in this
workshop!):
https://ipythonquant.wordpress.com/2018/06/05/

option-hedging-with-long-short-term-memory-recurrent-neural-networks-part-i/

https://github.com/mgroncki/DataScienceNotebooks/tree/master/DeepHedging

In the following, we summarize a (slightly modified) version of
Groncki’s results.
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Setup

We consider the Black/Scholes model St with µ = 0,
σ = 20% on a daily grid with a T = 1M horizon.

We train an LSTM on 500k realizations on all 30 days.

We present the discretization error of the Black/Scholes
strategy and perform various comparisons between the analytic
Black/Scholes-Delta and the strategy obtained by the LSTM.
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1) Out of Sample Test (same moneyness): Deltas
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1) Out of Sample Test (same moneyness): Boxplot
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2) Out of Sample Test (different moneyness): Deltas
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2) Out of Sample Test (different moneyness): Boxplot
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3) Out of Sample Test (different drift): Deltas

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 48/56



3) Out of Sample Test (different drift): Boxplot
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4) Out of Sample Test (different volatility): Deltas
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4) Out of Sample Test (different volatility): Boxplot
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Setup

We now present the results obtained by Bühler et al. in:
https://arxiv.org/abs/1802.03042

The setup is the discretized Heston model as discussed above
and a Call Option as a derivative.
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Model Hedge vs Deep Hedge α = 50%
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Model Hedge vs Deep Hedge α = 50% at fixed time slice
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Further Research Questions

The Black/Scholes pricing function has also been studied and
can be learned (including the time-dependence) with just one
NN:
https://arxiv.org/abs/1901.08943v2

Given that the ∆ is Black/Scholes is “easier” than the
pricing, is LSTM really necessary?

Can Groncki’s approach be improved such that one has one
NN to price options for all (reasonable) choices of moneyness?

How to systematically evaluate such an NN approach? What
would be needed to pass model validation?

Can one gain insights into the problem by studying the
topology of a NN that is (approximately) optimal in a certain
sense?
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