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Disclaimer

This presentation and any accompanying material are being provided solely for information and general illustrative
purposes. The author will not be responsible for the consequences of reliance upon any information contained in or
derived from the presentation or for any omission of information therefrom and hereby excludes all liability for loss
or damage (including, without limitation, direct, indirect, foreseeable, or consequential loss or damage and
including loss or profit and even if advised of the possibility of such damages or if such damages were foreseeable)
that may be incurred or suffered by any person in connection with the presentation, including (without limitation)
for the consequences of reliance upon any results derived therefrom or any error or omission whether negligent or
not. No representation or warranty is made or given by the author that the presentation or any content thereof will
be error free, updated, complete or that inaccuracies, errors or defects will be corrected.

The views are solely that of the author and not of his employer, Quaternion Risk Management GmbH. The
Chatham House rules apply.

The presentation may not be reproduced in whole or part or delivered to any other person without prior permission
of the author.
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Course Overview

1 Session: Introduction to Machine Learning

ML Basics: Mathematical Theory

2 Session: Machine Learning in Practice
3 ML Basics: Technology

Artificial Neural Networks I

4 Session: Financial Applications I

Artificial Neural Networks II
Deep Pricing
Deep Calibration

5 Session: Financial Applications II

Deep Hedging
Gaussian Process Regression
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Machine Learning & Quantitative Finance

Machine Learning in general is a hot and sometimes
controversial topic at the moment

While Neural Networks were already quite popular in the 90’s,
the technology stack to apply them in practice is much more
convenient now: faster hardware, cloud computing, parallel
computing on CPUs and GPUs, Python interfaces etc.
The industrial success of ML is partly not due to any ML
specifics, but simply due to the application of quantitative
techniques in areas, where no such technique was applied
before.
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Machine Learning & Quantitative Finance

Quantitative Finance

Finance is an area where quantitative methods have been
applied excessively for many years (Black/Scholes ’73 is 46
years old!)
Several decades of research led to Stochastic Calculus and
Quantitative Finance techniques which are quite sophisticated.
Many quantitative finance models require not only
management buy-in, but also regulatory approval and are thus
heavily scrutinized.
ML has created many new fields in quantitative finance such
as fraud detection, but can it boost existing areas such as
pricing, hedging and risk management?
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Concrete Applications of ML in Finance

1 American Monte Carlo: Regression techniques can be
thought of and tweaked by techniques from supervised
machine learning

2 Learning pricing functions: Speeds up pricing.

3 Learning the calibration function of a model: Speeds up
calibrations.

4 Learn hedging functions: Makes obtaining hedging
strategies even in incomplete markets more feasible.

5 CDS spreads: Find CDS proxies in for illiquid assets.

6 Anomaly detection / Test Driven Data Analysis: Find
data errors in input, output or intermediate steps of
production risk management systems.

7 Fraud Detection: Find fraudulent transactions.
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Machine Learning

Definition (Machine Learning)

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure J if its
performance at tasks in T , as measured by J, improves with
experience E . (Mitchell, Machine Learning, 1997).

There are different types of machine learning with more hands on
definitions / practical meanings:

Supervised Machine Learning: Learn a function from a
labeled data set

Unsupervised Machine Learning: Learn something for an
unlabeled data set

Selfsupervised Learning: Smart ways of obtaining labeled data
sets

Reinforcement learning: Gradually learn an outcome
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Machine Learning: High-Level Overview

Examples are available here:
https://github.com/niknow/machine-learning-examples
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Supervised Machine Learning

Definition (supervised machine learning)

Let X and Y be sets, called input space and ouput space (usually:
X ⊂ IRm, Y ⊂ IR). Any vector of pairs

(x , y) = ((x1, y1), . . . , (xN , yN)) ∈ XN × Y N

is called labeled data set with N training samples. The x are called
features and the y are called labels. Let H ⊂ Y X be a subspace
of functions X → Y , called hypothesis space, and
J : Y N × Y N → IR, be a cost function. A supervised machine
learning algorithm is a map

Y N × Y N →H , (y ′, y) 7→ h,

such that: J(h(x), y) = min
g∈H

J(g(x), y),

where h(x) := (h(x1), . . . , h(xN)) ∈ Y N
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Linear Regression: Definition

Definition (linear regression)

Let X ∈ IRN×m, called design matrix and y ∈ IRN , called response
variable. For any θ ∈ IRm, the function

hθ : IRm → IR, x 7→ hθ(x) =
m∑
j=1

xjθj

is called linear hypothesis with parameter vector θ (notice that the
space of all such functions is isomorphic to H = IRm). We define
J : RN × IRN → IR, (y , y ′) 7→ 1

2N ‖y − y ′‖2. The unique linear
hypothesis hβ such that

J(β) := J(hβ(X ), y) = min
θ∈IRm

J(hθ(X ), y)

is called linear least squares regression of X against y .
(In the expression hθ(X ), we apply hθ to every row of X ).
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Linear Regression: Solution

Theorem

Let X ∈ XN×m be a design matrix and y ∈ IRN be a response
variable. Then the coefficients β of the linear least squares
regression of X against y satisfy the normal equation:

XTXβ = XT y

Can be proven by differentiating:

θ 7→ J(hθ(X ), y) =
1

2N
‖Xθ − y‖2

2 =
1

2N

N∑
i=1

( m∑
j=1

θjxij − yi

)2

Numerically, the normal equations can be solved robustly via
QR-decomposition X = QR.
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Polynomial Regression with Design Matrix Assembly

Definition (polynomial regression)

Let x , y ∈ IRN be two vectors of data and d ∈ IIN. Then the linear
regression with the design matrix X ∈ IRN×(d+1), defined by
Xij := xνi , i = 1, . . . ,N, ν = 0, . . . , d , is called polynomial
regression of degree d (with intercept).

This is due to the fact that the data usually does not come in the
form of X , but rather in the form of x . The matrix X has the form

X =


1 x1 x2

1 . . . xd1
1 x2 x2

2 . . . xd2
. . .
1 xN x2

N . . . xdN

 ∈ IRN×(d+1)

and its columns are also called feature vectors. The first column is
called intercept and sometimes dropped.
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Example 1: Fit linear data through origin with no intercept
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y

predict
train

X = x ∈ IRN×d , d = 1, no intercept
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Example 2: Fit affine linear data with line with no intercept
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X = x ∈ IRN×d , d = 1, no intercept
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Example 3: Fit parabolic data with line
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X = x ∈ IRN×d , d = 1, no intercept
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Example 4: Fit parabolic data with parabola
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Example 5: Fit parabolic data with a crazy polynomial
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X = x ∈ IRN×(d+1), d = 100, with intercept
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How to design the design matrix?

How can we decide which choice of design matrix is “best” or
“good” and which is “bad”? How can we evaluate the goodness of
fit and justify the decision? Which d should we chose?

1 A priori Insight: Sometime the regression is performed in the
context of a model from which a good choice of the degree d
can be inferred

2 Plots & Natural Intelligence: Plotting and analyzing the
results obtained via trial & error

3 Systematic Diagnostic: Develop evaluation metrics to arrive
at a systematic decision.
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Bias/Variance Diagnostic

Definition

Let (xtrain, ytrain) be a labeled data set in a polynomial regression.
Let (xcv, ycv) be any other data set, called cross-validation set.
Denote by X respectively Xcv the associated design matrices. Let
β be the solution of the linear regression. Then

bias = Jβ(Xtrain, ytrain)

variance = Jβ(Xcv, ycv)

are called bias and variance.

In practice, the cross-validation set should be different from the
training set, but similar in structure. If nothing available, split the
training set!
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Example 6: Guess the degrees in the fitting polynomial
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Example 6: Try out degrees and compute bias/variance
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This is called a learning curve.
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Example 6: Result for d = 3
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Example 6: Fitted vs. “true” coefficients
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Synposis:

The learning curves are the only plots that remain 2D if the
problem becomes multi-dimensional.

A high bias is called underfitting, a high variance is called
overfitting.

Choosing the lowest degree that gives a sufficiently low bias
and variance is a good rule of thumb (”elbow kink”)

In absence of a cross-validation set, split the original data set
into a training set and a cross-validation set.

In case multiple models are compared, even a 3-fold split into
a training set, a cross-validation set and a test set to
ultimately evaluate the model performance is advisable.
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Multivariate Polynomial Regression

Definition (multivariate polynomial regression)

Let x ∈ (IRk)N ∼= IRN×k be a sequence of N samples of
k-dimensional data and y ∈ IRN . Let d = (d1, . . . , dk) ∈ IINk be a
degree vector. Then the linear regression with the design matrix

X =


1 x11 . . . xd1

11 x12 . . . xd2
12 . . . xdk1k

1 x21 . . . xd1
21 x22 . . . xd2

22 . . . xdk2k
. . .

1 xN1 . . . xd1
N1 xN2 . . . xd2

N2 . . . xdkNk

 ∈ IRN×(|d |+1)

is called multivariate polynomial regression .
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Regularization

Definition (regularized regression)

Let XN×(|d |+1) be a design matrix and y ∈ IRN be a response
variable. Then

θ 7→ Jα;θ(X , y) :=
1

2N

(
(Xθ − y)T (Xθ − y) + α‖θ‖2

2

)
is called regularized cost function with regularization parameter
α ∈ IR and the coefficients satisfying β = min

θ∈IRd Jα;θ(X , y) is

called Ridge/Tikhonov regression.
Analogously: If ‖θ‖2

2 is replaced by ‖θ‖1, this is called Lasso
regression.
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Example: Linear/Parabolic Dependence
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Example: Dependencies in the data - Learning Curves
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Example: Dependencies in the data - Coefficients
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linear regression with high degree yields instabilities
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Example: Optimal Coefficients
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Synopsis

Assessing the goodness of fit of a multi-variate regression
from plots quickly becomes difficult in higher dimensions.

Learning curves are still a helpful alternative.

Rather than choosing a degree for every feature manually, this
can be automated by setting a maximal degree and using
Ridge or Lasso regression.

Increasing the degree by too much yields instabilities in the
regression coefficients. For highly non-linear data, other
techniques are recommended (such as Neural Networks).

While regularized regression stabilizes the result, the resulting
coefficients can look different.
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“Tricks of the Trait”

Split data set X into: Xtrain, Xcv, Xtest to obtain bias and
variance diagnostics. Use learning curves on Xtrain, Xcv to
tweak the model and finally evaluate on Xtest.

Use regularization techniques such as Ridge or Lasso
regression to auto-select features.

Feature Scaling and Normalization: If different feature have
values of different scale, normalizing them improves accuracy
and stability of prediction further.
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Alternatives to learning curves:

Coefficient of Determination: The coefficient of
determination is given as

R2 := 1− SSres

SStot
:=

∑
i (yi − p(xi ))2∑

i (yi − ȳ)2
,

where p is the regression polynomial and ȳ is the mean of the
yi . It can be interpreted as the overall unexplained variance.

Hypothesis testing on the coefficients of the regression
polynomial such as:

1 t-Test
2 F-Test
3 p-values
4 . . .
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Dictionary: Quant vs. ML Researcher

Quant Researcher Machine Learning Re-
searcher

independent variable feature

dependent variable label

assemble design matrix generate feature vectors

regression supervised learning

residual / calibration/in-sample
error

bias / training error

out-of-sample-error / stability variance / cross-validation
error

regularization feature auto-selection
(Ridge, Lasso)

Netwon’s method gradient descent
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Classification Problems

While regression is suitable for continuous “learning” problems of
interpolation and extrapolation, it is not directly applicable to
binary classification problems such as:

Is a given email spam or not?

Is a transaction fraudulent or legitimate?

Is a tumor on an image malignant or benign?

Is the object on a picture a cat?

Is a face on a picture a given person?
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Definition

Definition

A binary classification problem is defined exactly as a regression
problem, i.e. by a labeled data set (x , y), but in this case
y ∈ {0, 1}N . Solving the regression problem is called logistic
regression, when the linear hypothesis is replaced by hβ : IRd → IR,
x 7→ g(βT x), where g is the sigmoid function, and Jβ is the
logistic cost function

Jβ(X , y) :=
1

N

N∑
i=1

cost(hβ(x (i)), y (i))

cost : IR× {0, 1} → IR, (z , y) 7→

{
− ln(z), y = 1,

− ln(1− z), y = 0.

A multi-class classification problem can be reduced to multiple
binary classification via the one-vs-all method.
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Sigmoid Function
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Using Logistic Regression

Solving the logistic regression problem is otherwise analogous
to the regression problems discussed so far.

To use the solution hβ for a prediction, one has to rely on the
decision boundary:

predict(x) =

{
0, 0 ≤ hβ(x) ≤ 1

2 ,

1, 1
2 < hβ(x) ≤ 1.

The “tricks of the trait”, i.e. feature scaling and
regularization apply to logistic regression as well.
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Evaluating Logistic Regressions

The result of a logistic regression is often evaluated in a matrix:(
p+ p−
n+ n−

)
where p± are the true/false positives and n± are the true/false
negatives. This can be further aggregated to

error :=
p+ + n+

p+ + p− + n+ + n−
, precision :=

p+

p+ + p−

recall :=
p+

p+ + n−
, F1 := 2

precision

precision + recall
.
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Precision and Recall

These metrics have a slightly different flavour and when optimizing
a logistic regression a trade off has to be made.

The precision p+

p++p−
is the fraction of true positives on the

positives. (How many tumors we labeled malignant were
actually malignant?)

The recall p+

p++n−
is the fraction of true positives on all

occurrences. (How many tumors that were actually malignant
did we label as malignant?)

Using precision and recall over the mere error p++n+

p++p−+n++n−
has the advantage that this works better for skewed data sets.

The F1 score attempts to combine precision and recall into a
single real number evaluation metric.
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The Unsupervised Learning Problem

Definition (unsupervised learning problem)

Any data set x = (x1, . . . , xN), xi ∈ IRm, defines an unsupervised
learning problem.

The task in unsupervised learning is to “classify” the data points in
absence of any given labels. This problem comes in two slightly
different flavours:

1 Clustering: Identify K clusters in the given data set and
classify each data point to a cluster (potentially assign new
data points to clusters)

2 Anomaly Detection: Identify which of the data points are an
anomaly.

Key idea: Solve the problem by minimizing a suitable cost
function.
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Example 1: A data set
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Example 1: Step 1

Choose random centroids and assign each data point to centroid
with smallest distance
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Example 1: Step 2

Compute new centroids as mean within each cluster and re-assign
data points
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Example 1: Step 3

repeat
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K-means Clustering

Definition (cost function)

Let x = (x1, . . . , xN), xi ∈ IRm, be an unlabeled data set, let
µ1, . . . , µK ∈ IRn be called centroids, and assume that any xi is
assigned an index ci ∈ {1, . . . ,K}. Then

J(c1, . . . , cN , µ1, . . . , µK ) :=
1

N

N∑
i=1

‖xi − µci‖
2

is the cost function for K-means.
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K-means algorithm

Algorithm 1 K-means

Input: dataset x ∈ IRN×m, a number K ∈ IIN of clusters
Output: cluster centroids µ1, . . . , µk , assignments c(1), . . . , c(N)

Code:
randomly initialize K cluster centroids µ1, . . . , µK ∈ IRn

repeat
for i = 1, . . . ,N do . Cluster assignment step

c(i) := index of centroid closest to x (i)

end for
for k = 1, . . . ,K do . Move centroid

µk := average of points assigned to cluster k
end for

until convergence
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K-means in practice

1 K -means is only meaningful if K � N.

2 Random initialization should be performed by setting
µ1, . . . , µK to randomly chosen training examples.

3 To avoid getting stuck in local optima, run this algorithm a
few hundred times, each with a new random initialization, and
pick the one with lowest cost J.

4 There is no general way of picking the number K of clusters.
One can try to plot the cost J depending on the clusters and
look for the ellbow kink, but in practice it simply depends on
the context.
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Clustering algorithms in scikit-learn

source: https://scikit-learn.org/stable/modules/clustering.html
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Anomaly Detection

Definition (anomaly detection)

Let x = (x1, . . . , xN), xi ∈ IRm, be any unlabeled data set and
x̃ ∈ IRm. Deciding whether or not x̃ is regular or an anomaly is
called anomaly detection

The problem is obviously not well-defined.

Key ideas are:

assumptions on the distribution of the underlying data (e.g.
Gaussian)
robust estimation of the distributions parameters (e.g. mean
and variance; knowing that the data might have outliers!)
Defining a function to decide if x̃ is an anomaly.
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Gaussian Elliptic Envelope

Input: dataset x (1), . . . , x (N) ∈ IRm, test candidate x ∈ IRm,
threshold ε
Output: is x an anomaly? (∈ {0, 1})
Code:
∀1 ≤ j ≤ m : µi := 1

N

∑N
i=1 x

(i)
j

∀1 ≤ j ≤ m : σ2
j := 1

N

∑N
i=1 (x

(i)
j − µj)2

p(x) :=
∏N

i=1 p(x (i), µi , σ
2
i ) :=

∏n
j=1

1√
2πσ2

j

exp(− (xj−µj )
2

2σ2
j

)

if p(x) < ε then
return True

else
return False

end if
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Anomaly Detection algorithms in scikit-learn

source: https://scikit-learn.org/0.20/auto_examples/plot_anomaly_comparison.html
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PCA

Principal Component Analysis projects high dimensional data into
a lower subspace of dimension k .

Algorithm 2 PCA

Input: dataset x (1), . . . , x (N) ∈ IRm, a number k ∈ IIN of dimen-
sions
Output: projected data z(1), . . . , z(k)

Code:
Σ := 1

m

∑n
i=1 (x (i))(x (i))T

[U,S ,V ] := svd(Σ)
Ur := Ureduce := (u(1), . . . , u(k))
z(i) = UT

r x (i), i = 1, . . . ,N
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Retained Variance

1 The value k is often chosen such that

1
N

∑N
i=1 ‖x (i) − x

(i)
approx‖2

1
N

∑N
i=1 ‖x (i)‖2

≤ 1%,

where x
(i)
approx := Urz

(i) is the reconstructed data. One also
says that 99% of the variance is retained.

2 To check how many variance is retained, one can use the
matrix S from the PCA and instead check that∑k

i=1 Sii∑m
i=1 Sii

≥ 99%.
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Applications and Comments

1 Correlation vs. Covariance: PCA can be computed with
respect to the correlation or the covariance matrix. (Notice
that the correlation matrix is the covariance matrix of the
normalized data set).

2 Dimensionality Reduction: A key application is the
reduction of dimensionality. Projecting data onto a
k-dimensional subspace can greatly speed up computation
times.

3 Visualization: In particular, projecting onto k = 2, 3 is a key
technique to visualize high-dimensional data sets.

4 Rebonato-Jäckel: Assembling a valid covariance matrix from
real-world data is a challenging task that occurs in particular
for cross-asset models. The Rebonato-Jäckel method can help
to ensure that a covariance matrix estimated from pairwise
covariances is valid, i.e. positive semi-definite.
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