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Disclaimer

This presentation and any accompanying material are being provided solely for information and general illustrative
purposes. The author will not be responsible for the consequences of reliance upon any information contained in or
derived from the presentation or for any omission of information therefrom and hereby excludes all liability for loss
or damage (including, without limitation, direct, indirect, foreseeable, or consequential loss or damage and
including loss or profit and even if advised of the possibility of such damages or if such damages were foreseeable)
that may be incurred or suffered by any person in connection with the presentation, including (without limitation)
for the consequences of reliance upon any results derived therefrom or any error or omission whether negligent or
not. No representation or warranty is made or given by the author that the presentation or any content thereof will
be error free, updated, complete or that inaccuracies, errors or defects will be corrected.

The views are solely that of the author and not of his employer, Quaternion Risk Management GmbH. The
Chatham House rules apply.

The presentation may not be reproduced in whole or part or delivered to any other person without prior permission
of the author.
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Introduction

We consider the following applications:

Pricing Derivatives
We consider the case of the Hull-White model with constant
and time dependent parameters. Using Supervised Learning
we create a Neural Network that learns the pricing of
Swaptions.

Calibration of Option Pricing Models
We consider the Heston Stochastic Volatility Model and apply
a Neural Network for calibrating to quotes of either implied
volatilities or option prices on a grid

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 5/48



Literature

We base our Python and ML based exposition on a bunch of
literature including:
Chollet F. (2018), Ramalho L. (2015), McKinney W. (2017),
Goodfellor I., Bengio Y, Courville A. (2016), James G, Witten D.,
Hastie T, Tibshirani R. (2013), Murphy K. P. (2012), Bishop C.
M. (2006)
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The Pricing Problem I

Consider a model for an asset (Stock, rate, FX rate, etc.) S with
model parameters µ ∈M ⊂ Rm and possibly incorporated market
information ξ ∈ E ⊂ Rk (rate, spread, rating, etc.). The fair
(risk-neutral) price of an option at time time t = 0 is given by the
expected value of the payoff P(·)

E [max(P(S , µ, ξ)−M, 0)]

where (M,T ) ∈ Θ ⊂ R2 denotes moneyness (strike,
log-moneyness, etc.) and T time to maturity. Letting

I := f (µ, ξ)× (M,T )|µ ∈M, ξ ∈ E , (M,T )T ∈ Θ ⊂ Rm+k+2

be the pricing input space. Then, define the pricing map
P : I → R+ by

(µ, ξ)× (M,T ) 7→ E [max(P(S , µ, ξ)−M, 0)]
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The Pricing Problem II

Often we consider the implied volatility of a European Call or Put
option. To this end let µ, ξ,M,T given. Then, we consider a
standard pricing model Bachelier, Black-Scholes-Merton or
Displaced Diffusion and denote its price P0(µ, ξ,M,T ). The
number that satisfies

P(µ, ξ,M,T )− P0(M,T , σiv(µ, ξ,M,T )) = 0

The function ϕ : I → R+ given by

(µ, ξ,M,T ) 7→ σiv(µ, ξ,M,T )

is called the implied (Bachelier, Black-Scholes Merton, DD)
implied volatility map.
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The Pricing Problem III

For the first financial application we consider the Hull-White model
given by

dr(t) = κ(t)(θ(t)− r(t))dt + σ(t)dW (t)

r(0) = r0

We use this to price Swaptions and learn the pricing using a Neural
Net. For more details on the Hull-White model see the Appendix.
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Generating Training Data

We use the QuantLib framework to generate the training set

import numpy as np

import numpy.matlib as npm

import matplotlib.pyplot as plt

import matplotlib.ticker as mtick

# create model parameters and prices

TrainingData = namedtuple("TrainingData", "start, length, volatility")

SwapRateMin = 0.0

SwapRateDelta = 0.01

VolMin = 0.00001

VolDelta = 0.2

NTrain = 100000

Nparams = 11

u01 = np.random.rand(NTrain,Nparams)

Smin = 0.0; Smax = 0.1; Sdelta = Smax-Smin;

kappamin = 0.00001; kappamax = 0.05; kappadelta = kappamax - kappamin;

Vmin = 0.0001; Vmax = 0.1; Vdelta = Vmax - Vmin;

lb=[Smin, kappamin, Vmin, Vmin, Vmin, Vmin, Vmin, Vmin, Vmin, Vmin, Vmin]

ub=[Smax, kappamax, Vmax,Vmax, Vmax, Vmax,Vmax, Vmax, Vmax,Vmax, Vmax]

Vecmin = [Smin, kappamin, Vmin, Vmin, Vmin, Vmin, Vmin, Vmin, Vmin, Vmin, Vmin]

Vecdelta = [Sdelta, kappadelta, Vdelta, Vdelta, Vdelta,Vdelta, Vdelta, Vdelta, Vdelta, Vdelta, Vdelta]

xx = Vecmin + Vecdelta * u01

yy = np.zeros((NTrain, 14))
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Filtering Errors

nError = 0

xx_ok=[]

yy_ok=[]

for i in range(0,NTrain):

#print(i)

#print(xx[i])

#print(xx[i][2])

term_structure = ql.YieldTermStructureHandle(ql.FlatForward(settlement,xx[i][0],ql.Actual365Fixed()))

volatilities = []

vols = [xx[i][2], xx[i][3], xx[i][4], xx[i][5], xx[i][6], xx[i][7], xx[i][8], xx[i][9], xx[i][10]]

for vol in vols:

volatilities.append(ql.QuoteHandle(ql.SimpleQuote(vol)))

reversions = []

try:

rev = xx[i][1]

revs = [rev]

for rev in revs:

reversions.append(ql.QuoteHandle(ql.SimpleQuote(rev)))

model = ql.Gsr(term_structure, volstepDates, volatilities, reversions)

engine = ql.Gaussian1dJamshidianSwaptionEngine(model)

swaptions = create_swaption_helpers(data, index, term_structure, engine)

mval = [s.modelValue() for (k,s) in enumerate(swaptions)]

yy[i][:] = mval

xx_ok.append(xx[i])

yy_ok.append(mval)

except:

mval = np.nan

nError = nError +1

print(’for’, nError, ’parameter set, implied vol can not be calculated!’)
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Saving/Loading Data for Reuse

np.savetxt("xx_gsr.txt", xx_ok)

np.savetxt("yy_gsr.txt", yy_ok)

np.savetxt("lb.txt", Vecmin)

np.savetxt("Vecdelta.txt", Vecdelta)

import os

xx = np.loadtxt(’xx_gsr.txt’) # train on implied volatilities

yy = np.loadtxt(’yy_gsr.txt’)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 13/48



The Data Set

Figure: Generated Data for the Gaussian Short Rate model
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The Data Set

Figure: Prices from applying the QL methodology for pricing
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Splitting the Data Set

# test_size is the percentage used for validation/test

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(

xx, yy, test_size=0.15, random_state=42)
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Definition of Neural Network

# define the neural network

import keras

from keras.layers import Activation

from keras import backend as K

from keras.utils.generic_utils import get_custom_objects

keras.backend.set_floatx(’float64’)

input1 = keras.layers.Input(shape=(Nparams,)) # input layer

x1 = keras.layers.Dense(10,activation = ’elu’)(input1)# hidden layer 1

x2 = keras.layers.Dense(10,activation = ’elu’)(x1) # hidden layer 2

x3 = keras.layers.Dense(10,activation = ’elu’)(x2) # hidden layer 3

x4=keras.layers.Dense(14,activation = ’linear’)(x3) # output layer; size depends on option surface

#x4=keras.layers.Dense(121,activation = ’linear’)(x3)

# set up the model

modelGEN = keras.models.Model(inputs=input1, outputs=x4)

modelGEN.summary()
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Train the Neural Network

# define the objective function and do the compilation and fitting

def root_mean_squared_error(y_true, y_pred):

return K.sqrt(K.mean(K.square(y_pred - y_true)))

modelGEN.compile(loss = root_mean_squared_error, optimizer = "adam")

history = modelGEN.fit(x_train, y_train, batch_size=32,validation_data = (x_test,y_test),

epochs = 50, verbose = True,shuffle=1)
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The Data Set

Figure: History for the training of the Neural Net.
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Train the Neural Network

# summarize history for loss and plot on training and validation set

plt.plot(history.history[’loss’])

plt.plot(history.history[’val_loss’])

plt.title(’model loss GSR’)

plt.ylabel(’loss’)

plt.xlabel(’epoch’)

plt.legend([’train’, ’validation’], loc=’upper right’)

plt.show()
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Train the Neural Network

plt.plot(error)

print(’max pricing error:’,np.max(np.abs(error))*10000)

print(’average pricing error:’, np.mean(np.abs(error))*10000)

print(’error bigger than 0.0001:’, n)

print(’max error occurs at index’, index_err_m)
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Results I

We created new data, the test data and plotted all results obtained
from the Neural Network approach to the prices calculated by the
corresponding QuantLib function.

max pricing error: 46.52 bps
average pricing error: 11.88 bps
error bigger than 0.0001: 1000
max error occurs at index: 345

Remember the results are on unseen data!
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Results II

We created new data, the test data and plotted all results obtained
from the Neural Network approach to the prices calculated by the
corresponding QuantLib function.

Remember the results are on unseen data!
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Results III

This graph shows the corresponding values obtained for the Neural
Net pricing and the actual QuantLib pricing for the index with the
worst pricing performance.

Remember the results are on unseen data!
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Calibration

Let Mω denote a model with d parameters ω ∈ Ω ⊂ Rd . For
instance for the Heston model we have

ω = {V0, θ, κ, ν, ρ}, Ω = {V0, θ, κ, ν > 0, ρ ∈ [−1, 1]}.

Let PMkt, PMω be the market prices/implied volatilities of n
quoted values and the corresponding model prices/implied
volatilities calculated using the parmaters ω.
To measure the difference between the market and the model
prices we consider a function d : Rn ×Rn → R+.
The actual calibration is to find ω̄ such that

ω̄ = argminω∈Ωd(PMkt,PMω) (1)
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Choices for d

Suitable choices for the function d are the squared distance or the
weighted squared distance.

d = (PMkt − PMω)>(PMkt − PMω)

d = max |PMkt − PMω |

or
d = ((PMkt − PMω)>W (PMkt − PMω)

with W = (wij)i ,j=1,...,d being a matrix of weights. In this way we
may for instance assign higher weights to liquid option prices.
We call d the objective function.
In practice the model prices already suffer from an approximation
error since only approximate solutions are available for pricing.
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Optimization Methods

To solve the calibration problem (1) we need to apply optimization
techniques. There are two categories of such methods

Non-gradient based optimization

Simulated Annealing
Differential Evolution
Nelder-Mead Simplex
...

Gradient Methods

(L)BFGS
Levenberg-Marquardt
SQP
...
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Calibration with ANN

Using ANN to calibrate models we have different choices

Learn the map (1) from observable market data (training +
validation) and use market data for calibration input (test).
This approach needs a lot of observed market data for training.
This might be a bottleneck.

Learn the map (1) from model prices (training + validation) and
use observable market data as input (test).
This way relies on synthetic market data since we can generate as
many training/validation points we like whenever we have a pricing
function/simulation available for the model under consideration.
Learning the inverse map directly may suffer from instabilities.

Learn the pricing function of a given model used in (1) using model
prices (training/validation) and calibrate using standard
optimization techniques calling the ANN price approximation with
market data as input (test)
Possible to create many samples for training/validation whenever a
pricing function/simulation method is available. Separation of
pricing and calibration leads to stability. The actual calibration step
is lightning fast.
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Calibration with ANN

Applying the two step or ML approach we see numerous
advantages:

Independence of the pricing approximation
For each model the most favourable pricing approximation could be
used. Since the generation of prices is separated from the actual
calibration we even can rely on Monte Carlo methods.

Availability of training data
It is possible to generate as many training data as we like. We could
also use different price approximations, eg. net architectures for
different parameter sets.

Interpretatbility
The interpretability of the results is the same as in the classic
approach. Since we work with models instead of purely ANN based
methods the model parameters have the same meaning as in the
classic approach. The ANN is nothing but a complex Black-Box
approximation that we need to assure it works.
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Example: Rough Bergomi Model

Let us report the calibration of a rough Bergomi model from
Horvath B., Muguruza A., Tomas M. (2019).

The model is given by

dX (t) = −1

2
V (t)dt +

√
V (T )dW (t)

V (t) = ξ0(t)E
(√

2Hν

∫ t

0
(t − s)H−1/2dZ (s)

)
t > 0, X (0) = 0, V (0) = v0 > 0 H ∈ (0, 1) is the Hurst
parameter E(·) is the stochastic exponential and ξ0 is the
initial forward variance.

The rough Bergomi model needs to be evaluated using Monte
Carlo methods
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One Step - Inverse Map

Figure: Calibration of the rough Bergomi model using one step
calibration, ie. learning the inverse map. From Horvath B., Muguruza
A., Tomas M. (2019)
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Two Step - Implicit

Figure: Calibration of the rough Bergomi model using two step
calibration, ie. learning the pricing function and optimization using the
learned pricing function. From Horvath B., Muguruza A., Tomas M.
(2019)
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Two Step - Implicit

Figure: Calibration of the rough Bergomi model using two step
calibration, ie. learning the pricing function and optimization using the
learned pricing function. Distribution across parameters. From Horvath
B., Muguruza A., Tomas M. (2019)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 36/48



Conclusions and Summary

The calibration of the rough Bergomi model is very fast

The calibration shows a high accuracy for all parameters

The results suggest that the model parameters are chosen
such that each models a different effect on the volatility
surface and the parameters do not effect others to the first
order
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Example: Heston

We consider the Heston stochastic volatility model

For the variances we find

E[V (t + h)|V (t)] = V (t)e−κh + θ
(
1− e−κh

)
V[V (t + h)|V (t)] = V (t)

ν2

κ

(
e−κh − e−2κh

)
+ θ

ν2

κ

(
1− e−κh

)2

=
ν2

κ

(
1− e−κh

)(
V (t)e−κh +

θ

2

(
1− e−κh

))

This suggests that there are parameters κ and ν that may
effect each other and, thus, lead to calibration instabilities

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 38/48



Generating Heston Parameters

Figure: Generating the parameters we use for training randomly.
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Generated Heston Smiles

Figure: Generated implied volatility smiles from the random data.
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Two Step - Implicit

Figure: Calibration of the Heston model using two step calibration, ie.
learning the pricing function and optimization using the learned pricing
function. We used 3 hidden layers with 30 nodes.
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Two Step - Implicit

Figure: Calibration of the Heston model using two step calibration, ie.
learning the pricing function and optimization using the learned pricing
function. We used 3 hidden layers with 40 nodes.
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Two Step - Implicit

Figure: Calibration of the Heston model using two step calibration, ie.
learning the pricing function and optimization using the learned pricing
function. Distribution across parameters. We used 3 hidden layers with
40 nodes.
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Worst Case Result - Training Set

Figure: Worst Case scenario for the training set.
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Result - Test Set

Figure: Outcome for a test scenario - close but extrapolated with regard
to the training data.
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Calibration Speed

If we have a trained FNN and use it for calibration it is
lightning fast We could increase the speed by

using the network weights from calibration using a framework
such as Keras with Tensorflow backend
code the neural net in numpy

Runtime comparison
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Calibration Speed

Figure: Calibration of the Heston model using different gradient based
optimisation methods.
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Summary and Conclusions

The calibration results for Heston show large discrepancies for
κ and ν.

The discrepancies suggest that a deeper study for the model
parameters is necessary.

The calibration is ultra-fast.

No-arbitrage issues can be considered in the training

Penalizing not only the loss but also differing parameters
might improve the calibration

Further research might involve other techniques like Inverse
Neural Nets and boundary constraints on the parameters

Classification methods can be applied to learn the quality of
the parameters for feature engineering, etc.
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