
Machine Learning
- Option Pricing, Calibration, Hedging -

- GPR for Pricing -

WBS Quant Conference - Workshop, Rome 2019

Jörg Kienitz / Nikolai Nowaczyk, Quaternion

UCT, BUW, Finciraptor finciraptor.de, joerg.kienitz@gmx.de

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 1/98

Disclaimer

This presentation and any accompanying material are being provided solely for information and general illustrative
purposes. The author will not be responsible for the consequences of reliance upon any information contained in or
derived from the presentation or for any omission of information therefrom and hereby excludes all liability for loss
or damage (including, without limitation, direct, indirect, foreseeable, or consequential loss or damage and
including loss or profit and even if advised of the possibility of such damages or if such damages were foreseeable)
that may be incurred or suffered by any person in connection with the presentation, including (without limitation)
for the consequences of reliance upon any results derived therefrom or any error or omission whether negligent or
not. No representation or warranty is made or given by the author that the presentation or any content thereof will
be error free, updated, complete or that inaccuracies, errors or defects will be corrected.

The views are solely that of the author and not of his employer, Quaternion Risk Management GmbH. The
Chatham House rules apply.

The presentation may not be reproduced in whole or part or delivered to any other person without prior permission
of the author.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 2/98

Gaussian Process Regression

1 Intro to GPR and Regression
Regression
Gaussian Process Regression (GPR)
Covariance Functions

2 Pricing and Illustration
Pricing using GPR

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 3/98

Outline

1 Intro to GPR and Regression
Regression
Gaussian Process Regression (GPR)
Covariance Functions

2 Pricing and Illustration
Pricing using GPR

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 4/98

Introduction and Objectives

In this session we consider the concept of a Gaussian Process

We relate this concept to standard regression techniques

The GP machinery is applied to provide estimates,
approximations to functions, resp. observations or learn a
function, resp. learn from observations

This technique is widely applied in machine learning and we
base our considerations on Rasmussen, C. and William C.
(2006)

After introducing the concepts we apply the machine learning
techniques to option pricing problems. The ideas are based on
Spiegeleer J., Madan D. B., Reyners S., Schoutens W. (1993)

Some applications to xVA are considered in Crepey S., Dixon
M. (2019)

Remark: We do not consider Classification!

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 5/98

General Setup

The setting is the Supervised Learning approach where we consider
a set

D := {(x1, y1), . . . , (xn, yn)}

The xi ∈ Rd , for i = 1, . . . , n and yi ∈ R for i = 1, . . . , n.
We denote (x1, . . . , xn) by X the inputs and (y1, . . . , yn) by Y , the
targets.
The observations are for instance historic data, market data or
option pricing data. We show examples where yi is calculated from
an option pricing model that uses xi as input parameters.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 6/98

Outline

1 Intro to GPR and Regression
Regression
Gaussian Process Regression (GPR)
Covariance Functions

2 Pricing and Illustration
Pricing using GPR

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 7/98

Regression

We first consider Regression in a Baysian context.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 8/98

The Regression Model

Let x ∈ Rd be an input vector and w ∈ Rd a vector of weights.
The basis function regression model with Gaussian noise is

f (x) = ϕ(x)>w (1)

y = f (x) + ε, ε ∼ N (0, σ2
n) (2)

We call y in (2) the observed target values. To the approximation
f (·) we add a Gaussian noise ε accounting for the fact that y differ
from the approximation values f (x) in (1).
Remark: ϕ = (ϕ1, . . . , ϕd) a collection of basis function. Linear
and polynomial regression are special cases. Using basis function
we lift the regression into the feature space.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 9/98

The Bayes Theorem

Let (Ω,F ,P) be a probability space with σ-algebra F , probability
measure P and let A,B ∈ F . Then, Bayes Theorem states:

P(A|B) =
P(B|A)P(A)

P(B)
(3)

P(A|B) is called the posterior

P(B|A) is called the likelihood

P(A) is called the prior

P(B) is called the scaling

If we know the prior, the likelihood and the scaling, then, we can
calculate the posterior.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 10/98

The Prior and Posterior

Coming back to our setting, let us assume some uncertainty on the
parameters w . To this end we assume:

w ∼ N (0,Σp)

We call this distribution the Prior Distribution.

The posterior distribution is now the likelihood times the prior
divided by the marginal likelihood, resp. scaling (Bayes Theorem)

Posterior =
likelihood× prior

marginal likelihood

or, formally,

p(w |Y ,X) =
p(Y |X ,w)p(w)

p(Y |X)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 11/98

The Prior and Posterior

The posterior combines likelihood and prior but scaled.

The posterior captures all knowledge about parameters

p(w |Y ,X) ∝ exp

(
−1

2
(w − w̄)>A(w − w̄)

)
with (·−1 denotes matrix inversion)

w̄ =
(
XϕX>ϕ
σ2
n

+ Σ−1
p)−1XϕY

σ2
n

and A =
XϕX

>
ϕ

σ2
n

+ Σ−1
p

Xϕ denotes column-wise application of the basis functions.

This leads to the Gaussian posterior distribution

p(w |X ,Y) ∼ N
(
w̄ ,A−1

)
(4)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 12/98

The Posterior - Making predictions

For making predictions we use the mean of the posterior
distribution!
To this end we average over all outcomes with regard to the
distribution of w
Denoting Y∗ = f (x∗) with x∗ being some new input x∗ /∈ X , we get

p(Y∗|x∗,X ,Y) =

∫
p(Y∗|x∗,w)p(x |X ,Y)dw (5)

= N
(
ϕ(x∗)

>A−1XϕY

σ2
n

, ϕ(x∗)
>A−1ϕ(x∗)

)
.

The predictive distributions is again Gaussian with mean given by
the posterior mean of the weights mulitplied by the test input. the
predictive variance is a quadratic form of the test input with the
posterior covariance matrix.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 13/98

Example - Linear Regression in Bayes Context

Figure: Regression in a Bayesian setting using linear basis functions.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 14/98

Example - Polynomial Regression in Bayes Context

Figure: Regression in a Bayesian setting using polynomial basis functions.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 15/98

Example - Basis Function Regression in Bayes Context

Figure: Regression in a Bayesian setting using Gaussian basis functions.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 16/98

Basis Function Regression I

We have considered the restrictive linear case so far. But
regression can be extended to more general settings using basis
functions. This is often applied in practice.

Often polynomials were used, ie. ϕ = (1, x , x2, . . .)>. The
resulting space ϕ(x) is called the feature space

The regression problem (still linear if ϕ does not depend on
w) becomes

f (x) = ϕ(x)>w (6)

The predictive distribution using (6) becomes

Y∗|x∗,X ,Y ∼ N
(
ϕ>∗ A

−1ϕY

σ2
n

, ϕ>∗ A
−1ϕ∗

)
(7)

where ϕ∗ = ϕ(x∗), ϕ = ϕ(X) and A = σ−2
n ϕϕ> + Σ−1

p .

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 17/98

Basis Function Regression II

Let us first write the predictive distribution (7) in a different way

Y∗|x∗,X , y ∼ N
(
ϕ>∗ Σpϕ(K + σ2

nI)
−1Y ,

ϕ>∗ Σpϕ∗ − ϕ>∗ Σpϕ(K + σ2
nI)
−1ϕ>Σpϕ∗

)
(8)

with K = ϕ>Σpϕ. The equation (8) is another way to state the
predictive distribution.

The computation involves inverting matrices of size n × n which
depends on the number of observations.

For training sets that need to be used that can be numerically
challenging and we have to resort to sparse methods.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 18/98

The Kernel trick

Since all expressions we considered were of the form ϕ>Σpϕ,
ϕ>∗ Σpϕ or ϕ>∗ Σpϕ∗ we observe:

Rewriting it all boils down to calculate variants of a kernel K ,
ie linear functions of basis functions of x-values.

K is obtained by evaluating a function k : Rd × Rd → R
which is called covariance function or the kernel.

To only consider K - which means lifting input space
(x-values) into feature space (ϕ(x)-values) by means of inner
products - is called the kernel trick.

The kernel trick allows to formulate the problem in a way that
does not need to specify basis functions.

The kernel keeps all the information about the covariance and,
thus, the model.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 19/98

Connection to Standard OLS I

Let us shortly comment on the connection of Bayesian Regression
(BR) to standard ordinary least squares regression (OLS).

OLS aims to produce a point estimate - the response estimate
is a single value

BR aims to propose a distribution - this means the response
variable is not estimated as a single value but as drawn from a
probability distribution

BR creates a posterior distribution that is more widespread if
only a few data points are available

Applying BR on an increased set of data points the likelihood
becomes more dominant and ’washes’ out the prior. This is
extremely useful especially in cases where we have no
information about the prior and simply use some distribution -
often the Gaussian.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 20/98

Connection to Standard OLS II

Let us illustrate this observation by considering the OLS and BR
(some realisations) on an example set.

Figure: Illustration OLS vs BR. The green line is the one obtained by
OLS and the red lines are samples in the sense of BR

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 21/98

Connection to Standard OLS III

We can write down a kernel by using eg. polynominal basis
functions

This means we can embed the standard kernels into the
framework of Bayesian regression

The kernel formulation however allows for more general
structures

The kernel formulation does not need basis functions and this
is very suitable for embedding the Bayesian regression into a
more general framework

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 22/98

Gaussian Processes
We wish to define Gaussian Processes and show how to apply the
theory to regression efficiently. All the results are finally applied to
solve option pricing problems.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 23/98

Outline

1 Intro to GPR and Regression
Regression
Gaussian Process Regression (GPR)
Covariance Functions

2 Pricing and Illustration
Pricing using GPR

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 24/98

A Gaussian Process

A Gaussian Process is a collection of random variables for which
any finite number of these have a joint Gaussian distribution.
For the regression we are interested in f (x) for a random variable
x . Let us assume

m(x) = E[f (x)] (9)

CoV(x , y) := k(x , y) (10)

= E[(f (x)−m(x))(f (y)−m(y))]

We write
f (x) ∼ GP(m, k) (11)

Remark: Often m = 0 but this assumption can be relaxed!

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 25/98

How does it work

The use of a Gaussian process helps to formulate the regression we
considered earlier in a different way. This is in terms of function
spaces.

Choose a prior distribution (on functions)

Combine prior with observation to create the posterior
distribution (on functions)

Calculate the notions of interest quantiles, MAP (maximum a
posterior), etc.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 26/98

Gaussian Process Python I

Using Python the package numpy can be used to set up a squared
exponential kernel using:

import numpy as np

def kernel(X1, X2, l=1.0, sigma_f=1.0):

sqdist = np.sum(X1**2, 1).reshape(-1, 1) + np.sum(X2**2, 1) - 2 * np.dot(X1, X2.T)

return sigma_f**2 * np.exp(-0.5 / l**2 * sqdist)

Then, realizations of a Gaussian process with this specification of the kernel are calculated by:

%matplotlib inline

Finite number of points

X = np.arange(-5, 5, 0.2).reshape(-1, 1)

Mean and covariance of the prior

mu = np.zeros(X.shape)

cov = kernel(X, X)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 27/98

Gaussian Process Python II

For plotting we use material from
https://github.com/krasserm/bayesian-machine-learning
where many of the illustrations and methods we outlined here are
explained and illustrated.

from gaussian_processes_util import plot_gp

Finite number of points

X = np.arange(-5, 5, 0.2).reshape(-1, 1)

Mean and covariance of the prior

mu = np.zeros(X.shape)

cov = kernel(X, X)

Draw three samples from the prior

samples = np.random.multivariate_normal(mu.ravel(), cov, 3)

Plot GP mean, confidence interval and samples

plot_gp(mu, cov, X, samples=samples)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 28/98

Example - Prior for Examples

Figure: Samples from Prior on which the examples are based.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 29/98

Gaussian Process Python III

from numpy.linalg import inv

def posterior_predictive(X_s, X_train, Y_train, l=1.0, sigma_f=1.0, sigma_y=1e-8):

K = kernel(X_train, X_train, l, sigma_f) + sigma_y**2 * np.eye(len(X_train))

K_s = kernel(X_train, X_s, l, sigma_f)

K_ss = kernel(X_s, X_s, l, sigma_f) + 1e-8 * np.eye(len(X_s))

K_inv = inv(K)

from equation for mean

mu_s = K_s.T.dot(K_inv).dot(Y_train)

from equation for covar

cov_s = K_ss - K_s.T.dot(K_inv).dot(K_s)

return mu_s, cov_s

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 30/98

Noise Free Observations

Noise free training data

X_train = np.array([-4, -3, -2, -1, 1]).reshape(-1, 1)

Y_train = np.sin(X_train)

Compute mean and covariance of the posterior predictive distribution

mu_s, cov_s = posterior_predictive(X, X_train, Y_train)

samples = np.random.multivariate_normal(mu_s.ravel(), cov_s, 3)

plot_gp(mu_s, cov_s, X, X_train=X_train, Y_train=Y_train, samples=samples)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 31/98

Example - Noise Free Observations

Figure: Posterior Samples with uncertainty.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 32/98

Noisy Observations

specify the noisiness

noise = 0.4

Noisy training data

X_train = np.arange(-3, 4, 1).reshape(-1, 1)

Y_train = np.sin(X_train) + noise * np.random.randn(*X_train.shape)

Compute mean and covariance of the posterior predictive distribution

mu_s, cov_s = posterior_predictive(X, X_train, Y_train, sigma_y=noise)

samples = np.random.multivariate_normal(mu_s.ravel(), cov_s, 3)

plot_gp(mu_s, cov_s, X, X_train=X_train, Y_train=Y_train, samples=samples)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 33/98

Example - Noisy Observations

Figure: Posterior Samples with uncertainty.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 34/98

Example - Changing Kernel Parameters

Figure: Using different parameters for the kernel.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 35/98

Example - Regression

We obtain an example for a Gaussian Process by considering the
linear regression

E[f (x)] = ϕ(x)>E[w] = 0

CoV(f (x)f (y)) = ϕ(x)> E[ww>]︸ ︷︷ ︸
Σp

ϕ(y)

One example of a kernel is the squared exponential, given by

k(x , y) =
1

σ2
n

d∑
i=1

(xi − yi)
2

l2i

The length scale can be thought of the distance to move in input
space to significantly change the value in feature space and is
controlled by l . σ controls the overall variance. These are the
hyperparameters. Many variants of kernels exist and we consider
some in the sequel.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 36/98

Example: Initialization

Choose the prior (which is GP) together with the
covariance/kernel

Either the hyperparameters are already chosen or they need to
be optimized

Optimization
Calculate the marginal log likelihood and its gradient either by
a local optimizer and different starting points or a global
optimizer, etc.
Result: Hyperparameters

Obtain the posterior/estimators

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 37/98

Example: Create the matrix K

Based on the input data X and after choosing the kernel k we
determine the matrix K :

K = K (X ,X) =

k(x1, x1) k(x1, x2)

... k(x1, xn)

k(x2, x1) k(x2, x2)
... k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2)
... k(xn, xn)

 (12)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 38/98

Example: Create the matrix K∗ and K∗∗

After choosing the set X∗ that determine the data we are
interested in we calculate

K∗ = K (X∗,X) =

k(x∗,1, x1) k(x∗,1, x2)

... k(x∗,1, xn)

k(x∗,2, x1) k(x∗,2, x2)
... k(x2, xn)

...
...

. . .
...

k(x∗,n∗ , x1) k(x∗,n∗ , x2)
... k(x∗,n∗ , xn)

(13)

and
K∗∗ = K∗∗(X∗,X∗) = k(x∗, x∗) (14)

The input is crucial to create the MAP estimator and the variance.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 39/98

Example: Using the matrices

To calculate the MAP estimator and the variance we use the fact
that the joint distribution is(

f
f∗

)
∼ N

(
0,

(
K K>∗
K∗ K∗∗

))
since we work in a GP setting and have determined the kernel!

Thus, we have based on calculating with Multi-variate Gaussian
distributions

f∗|f ∼ N (K∗K
−1f ,K∗∗ − K∗K

−1K>∗)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 40/98

Example: Calculate the MAP estimator and its Variance

Using this result we may infer all quantiles for y∗ from general
results on Gaussian distributions and, especially, we have for mean

E[f∗|f] = K∗K
−1f

that is taken as the best estimate on having observed f∗ and for
the variance

V[f∗|f] = K∗∗ − K∗K
−1K>∗

that determines the variation of our estimator.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 41/98

Example:

The predictive distribution which is equivalent to (7) and (7)is in
the setting of GP

f∗|X ,Y ,X∗ ∼ N (f̄∗,CoV(f∗)) (15)

f̄∗ = E[f∗|X ,Y ,X∗] = K∗(K + σ2
nI)
−1Y (16)

CoV(f∗) = K∗∗ − K∗(K + σ2
nI)
−1K>∗ (17)

Remark: We added the noise term σ2
n. This is an exact

correspondance to the predictive distribution considered earlier
when we identify K (·, ·) = ϕ>Σpϕ. This means that for any set of
basis functions represented by ϕ the covariance at points x1 and x2

can be computed by k(x1, x2) which is the multiplication of the
corresponding quantities given by ϕ>Σpϕ. We can also write every
covariance function of a GP in a basis representation, thus,
specifying ϕ.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 42/98

Representation

f̄∗ = k>∗ (K + σ2
nI)
−1Y

V[f∗] = k(x∗, x∗)− k>∗ (K + σ2
nI)
−1k∗

If for a single observation x∗ we consider the value of the
predicted value f∗ it is given as the linear combination

f∗ =
n∑

j=1

αjk(xj , x∗), α = (K + σ2
nI)
−1

This representation is a manifest of the Representer theorem
Despite the setting is infinite dimensional for a given state x∗ we
only care about (n+1) dimensions, the n training points and the
given point. Since we marginalize on this setting the infinite gets
to an finite dimensional setting.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 43/98

Marginal Likelihood

For later use (optimizing hyperparameters) the marginal likelihood
is important. It is given as the integral of the likelihood times the
prior, ie.

p(y |X) =

∫
p(y |f ,X)p(f |X)df

This specifies a marginalization over the function values f .

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 44/98

Marginal Likelihood

In the Gaussian setting we have f |X ∼ N (0,K) or

log(p(f |X)) = −1

2
f >K−1f − 1

2
log(|K |)− n

2
log(2π)

and the likelihood is y |f ∼ N (f , σ2
nI). In this Gaussian setting the

logarithmic marginal likelihood is given by

log(p(y |X)) = −1

2
y>(K + σ2

nI)
−1y − 1

2
log(|K + σ2

nI |)−
n

2
log(2π)

Remark: When implementing GPR it might be worth to use
decomposition techniques such as Cholesky to perform the
inversion. This increases stability and speed.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 45/98

Example: Inter-/Extrapolation

We consider a collection of points

D := {(x1, y1), . . . , (xn, yn)}

with
X = {0.01, 0.25, 0.5, 0.75, 1, 1.25, 1.5}

and the corresponding values

Y = {1.3, 1.74, 2.1, 2.451, 2.69, 2.874, 3.1};

Taking the squared exponential kernel

σf e
−(x−y)2/(2l2) + e−2 sin(πf (x−y))2

+ σnδ(x , y)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 46/98

Example: Inter-/Extrapolation

0 0.5 1 1.5
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2
Given X and Y

Figure: The points determined by X and Y .

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 47/98

Example: Inter-/Extrapolation

Output for the points

X∗ = {0.14, 0.86, 1.143, 1.7}

based on GPR using optimization for finding the best
hyperparameters.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

1

1.5

2

2.5

3

3.5

4

y

Inter-/Extrapolated Points using GPR

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

1

1.5

2

2.5

3

3.5

4

y

Inter-/Extrapolated Points using GPR

Predict

Predict

Predict

Predict

Figure: MAP estimator and variation for the set of points given by x∗
based on the GP model and the input data X and Y .

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 48/98

Example: Learning a Function

This example is on two-dimensional input data. We consider

D := {(x11, x12, y1), . . . , (xn1, xn2, yn)}

We wish to use GPR to learn the function

f (x) = sin(x) cos(x)

The function values now take the role of the input data X and Y
from the first example. Here we have chosen the grid given by
X = {−3,−2.5, . . . , 3} and Y = {−2,−1.5, . . . , 2} as input.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 49/98

Example: Learning a Function

Figure: Guess what is the original surface and which is the predicted...

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 50/98

Example: Learning a Function

This was not easy... The right one was the predicted surface from
just using 117 training points... Not bad!
Here is the difference of the two surfaces:

Figure: Difference of the true and the predicted values for the function
f (x) = sin(x) cos(x)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 51/98

Example: Learning a Function

Output for the points x∗, the surface determined as grid points

x∗ = grid(−3 : 0.1 : 3,−2 : 0.1 : 2))

and optimization of the hyperparameters.

Figure: MAP estimator (surface) for the surface of the function
f (x) = sin(x) cos(x) and the input data as scatter plot.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 52/98

Recipe

Regression

Prior distributions
The choice of the prior distribution accumulates our
beliefs/assumptions we expect to observe. This could for
instance be favouring smooth functions, etc.

Posterior distribution
If we assume a data set D = {(x1, y1), . . . , (xn, yn)} is
observed we wish to adjust our prior belief fitting to this data
set. The combination of the prior distribution and the
observations D lead to the posterior distribution.

Uncertainty
We might wish to exactly fit the set of observed data or
incorporate a small bias

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 53/98

Train, Validate, Test

Monitoring the performance for samples not in the training set
but are admissible to the training data (eg in option pricing
we consider lower and upper bounds for all involved quantities
S , K , T or σ and select a random subset for training. The
validation set should also satisfy the constraints!)

The hold-out method takes a random sample and uses a
(small) subset of the training set and its performance on the
hold-out set as a measure of goodness. This is regarded as a
proxy for the generalisation error.

Usually, model selection is based on this goodness of fit

A drawback of the hold-out method is that only a fraction of
the full data set can be used for training

If the validation set it small, the performance estimate
obtained may have large variance.

Remark: Take as a solution (k-fold) Cross-Validation

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 54/98

(k-fold) Cross-Validation

The method of (k-fold) Cross Validation is as follows:

The data is split into k disjoint, equally sized subsets

validation is done on a single subset

training is done using the union of the remaining k − 1 subsets

the entire procedure being repeated k times

each time with a different subset for validation.

Cross-validation is used with a loss function with the squared
error loss being the most popular

For probabilistic models (here: GPR) it is often argued that
the negative log probability loss should be used.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 55/98

(k-fold) Cross-Validation

A large fraction of the data can be used for training, and all cases
appear as validation cases. The price is that k models must be
trained instead of one. Typical values for k are in the range 3 to
10.
Remark: The extreme case of k-fold cross-validation is obtained
for k = n, the number of training cases, also known as
leave-one-out cross-validation.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 56/98

Model Selection

If we decide to work in the setting of GP

choose the kernel

choose the parameters

The parameters are called hyperparameters in machine learning.
The choice of the parameters is often refered to as optimization of
hyperparameters.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 57/98

Hyperparameters 1

For the GPR there is a natural measure of fit that may not need
cross validation. Consider the marginal likelihood given by

L = log(p(y |X , ω)) = − 1

2
y>K−1

y y︸ ︷︷ ︸
I

− 1

2
log(|Ky |)︸ ︷︷ ︸

II

− n

2
log(2π)︸ ︷︷ ︸
III

(18)
with Ky = Kf + σ2

nI .
(I) is the data-fit since this quantity involves the input data and
the observed values, (II) is the complexity penalty since it only
involves the covariance function and the inputs and (III) is a
normalization constant.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 58/98

Hyperparameters 2

For a given covariance functions the parameters which are not
input parameters are called hyperparameters

In the first examples we used to work with the covariance
function (variant of squared exponential)

σf exp(−(x−y)2/(2l2)) + exp(−2 sin(πf (x−y))2) +σnδ(x , y)

The parameters σf , l , σn, f are the hyperparameters of the
covariance function.

The hyperparameters can be optimized for the given setting.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 59/98

Hyperparameters 3

From the probabilistic framework it is possible to choose the
hyperparameters and covariances directly from the training
data

This might avoid costly validation

Minimize negative logarithmic marginal likelihood L, see (18)

The minimization is a non-convex optimization

Gradient based optimization (CG, Newton, etc.) - Calculate
the gradient for of the kernel with regard to the
hyperparameter

∂L
∂wi

=
1

2
tr(K−1

y)
∂Ky

∂wi
− 1

2
y>K−1

y

∂L
∂wi

K−1
y y

Use optimization to minimize a given loss function, e.g. log
likelihood

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 60/98

Fixed Basis Functions

To use a set up with deterministic but non-zero mean it is possible
to apply the zero mean to the observations X −m(X) and after
doing the regression adding m(X) again. This leads to consider the
following case:

f (x) ∼ GP(m(x), k(x , y))

The new estimator for the mean is given by

f̄∗ = m(x∗) + K (x∗, x)K−1
y (y −m(x)), Ky = K + σ2

nI

Remark: The specification of a deterministic mean function is by
far means obvious!

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 61/98

Fixed Basis Functions

Another approach is to specify fixed basis functions

g(x) = f (x) + h(x)>β, f (x) ∼ GP(0,K (x , y))

h(x) is a vector of fixed basis functions and β is a weight vector
and needs to be computed taking the observations into account.
This could be done for instance by jointly optimizing with the
hyperparameters. Another approach would be to assume
β ∼ N (b,B) to create the setting

g(x) ∼ GP(h(x)>b, k(x , y) + h(x)>Bh(y))

which is also a GP with noise coming from the uncertainty of β.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 62/98

Fixed Basis Functions

We can then work in the GP context to predict using

g(x∗) = H>∗ β̄ + K>∗ K
−1
y (y − H>β̄) = f̄ (x∗) + R>β̄ (19)

CoV(g∗) = coV(v∗) + R>(B−1 + HK−1
y H>)−1R (20)

with H being the matrix evaluated jointly on all training points
and H∗ on all test points. where we used

β̄ =
(
B−1 + HK−1

y H>
) (

HK−1
y y + B−1b

)
(21)

R = H∗ − HK−1
y K∗ (22)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 63/98

Fixed Basis Functions - Marginal Likelihood

The logarithmic marginal likelihood which is used to optimize over
the parameters becomes

log p() =
1

2

(
H>b − y

)> (
Ky + H>BH

)−1 (
H>b − y

)
−1

2
log
∣∣∣Ky + H>BH

∣∣∣− n

2
log(2π) (23)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 64/98

Covariance Functions
The main ingredient of a Gaussian Process. The choice of this
notion controls the overall behaviour of the approximating function.
For instance can we control the smoothness or determine the
strength of dependency with respect to the distance of two points.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 65/98

Outline

1 Intro to GPR and Regression
Regression
Gaussian Process Regression (GPR)
Covariance Functions

2 Pricing and Illustration
Pricing using GPR

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 66/98

Covariance Functions

The choice of the covariance structure is crucial to GPR

A covariance that depends on the difference x − y is called
stationary

A covariance that depends on absolute difference |x − y | is
called isotropic

A covariance that depends on x · y is called dot product

The general name for a function of two arguments that are
mapped into R is called a kernel

Covariance is linked to the notion similarity or continuity. Thi
means points close to a given point x should produce results
that are close to f (x) = y . The covariance function defines
similarity.

A kernel is positive semindefinite if∫
k(x , y)f (x)f (y)dµ(x)dµ(y) ≥ 0

or for matrices on data x>Kxxx ≥ 0
Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 67/98

Example: Squared Exponential

The squared exponential or radial basis covariance is stationary,
i.e. r = |x − y | with hyperparameter l and is given by

kSE(x , y) = σ2 exp

(
− r2

2l2

)
(24)

The parameter l in (24) is called the (characteristic) length scale.
Applying the squared exponential covariance assumes that
variables close in the input space are highly correlated, whilst those
far away are uncorrelated. Very smooth, infinitely differentiable

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 68/98

Example: ARD SE covariance

The automatic relevance determination squared exponential
covariance is given by

kARDSE(x , y) = σ2
0 exp

(
−1

2

d∑
i=1

(
xi − yi

li

)2
)

(25)

The parameters li , i = 1, . . . , d in (25) are called the individual
(characteristic) length scales. li determines the relevance of
parameter i . For large li the i-th parameter is irrelevant

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 69/98

Example: Matérn Class

The Matérn covariance is stationary with hyperparameters ν, l > 0
is given by

kMA(x , y) = σ2 21−ν

Γ(ν)

(√
2ν‖x − y‖2

l

)ν

Kν

(√
2ν‖x − y‖2

l

)
(26)

The function Kν in (26) is the modified Bessel function. For finite
ν the samples are much more rough. Setting ν = p + 1/2 this
kernel can be expressed as

kMA,p(x , y) = σ2 exp

(√
2ν‖x − y‖2

l

)
Γ(p + 1)

2p + 1
(27)

×
p∑

i=0

(p + i)!

i !(p − i)!

(√
8ν‖x − y‖2

l

)p−i

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 70/98

Example: Matérn Class - Controlling Smoothness

The variable l in (26) and (27) determines how quickly the
covariance thins out in dependence of how apart the points
are.

If p = 0 in (27) the kernel reduces to the OU-kernel

kOU(x , y) = σ2 exp

(
−‖x − y‖2

l

)
(28)

If p →∞ in (27) the limit is a radial basis function kernel

kRB(x , y) = σ2 exp

(
−‖x − y‖2

2l2

)
(29)

Using the Matérn class we can control smoothness

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 71/98

Example: Matérn Class - Controlling Smoothness

Figure: Controlling smoothness using the Matérn Class kernel.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 72/98

Example: Vasicek

In the Vasicek model the short rate is determined by

dr(t) = κ(θ − r(t))dt + σdW (t) (30)

r(0) = r0

with mean reversion rate κ, mean reversion level θ and volatility
σ. The covariance for r(t) and r(u) is given by

kVr(t, u) =
σ2

2κ
exp(−κ(t + u)) (exp(2κmin(t, u))− 1) (31)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 73/98

Example: Vasicek

If we consider the yield Y (t) := 1
t

∫ t
0 r(s)ds in the Vasicek model

the covariance for Y (t) and Y (u) is given by

kVy(t, u) =
σ2

2κ3tu
(2κt − 2 + 2 exp(−κt)− 2 exp(−κ(t + u)))

(32)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 74/98

Non-stationary kernels

It is also possible to consider non-stationary kernels. Examples
include

K (x , y) = σ2 + x · y
K (x , y) = min(x , y)

K (x , y) = exp

(
−2 sin2(x−y

2
)

λ2

)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 75/98

Constructing new Kernels

Let K1, K2 and h be kernels. Then, new kernels can be
constructed as follows:

K (x , y) = K1(x , y) + K2(x , y)

K (x , y) = K1(x , y) · K2(x , y)

K (x , y) =

∫
h(x , z)K1(z ,w)h(y , z)dzdw

See www.cs.toronto.edu/∼duvenaud/cookbook/ for many
examples.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 76/98

Outline

1 Intro to GPR and Regression
Regression
Gaussian Process Regression (GPR)
Covariance Functions

2 Pricing and Illustration
Pricing using GPR

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 77/98

GPR in Action

We wish to use GPR for

... curve fitting

... option pricing

by having an ı̈nfinite dimensional Gaussian distribution̈, ie. a
Gaussian process, using continuous mean and covariance functions.
For option pricing we illustrate the method using the
Black-Scholes-Merton model as well as the Heston model.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 78/98

Pricing using GPR
In this section we wish to apply the GPR to option pricing
applications. We outline the methodology for the
Black-Scholes-Merton and the Heston model on European and
American options.
The method is applicable to all kinds of models and does not rely
on an fast numerical method. This means models where only
Monte Carlo methods are available for pricing, eg. rough volatility
models, we can apply the method for fast pricing and calibration.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 79/98

Outline

1 Intro to GPR and Regression
Regression
Gaussian Process Regression (GPR)
Covariance Functions

2 Pricing and Illustration
Pricing using GPR

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 80/98

The Black-Scholes-Merton Model I

For the first experiment we consider the following parameter
regions:

Parameter Min Parameter Max

Tmin = 0.25 Tmax = 10
rmin = 0.01 rmax = 0.2
σmin = 0.05 σmax = 0.5
Smin = 70 Smax = 130
Kmin = 70 Kmax = 130

A GPR model is trained using the kernel function kARDSE ,

k(x , y) =
1

σ2
n

d∑
i=1

(xi − yi)
2

l2i

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 81/98

The Black-Scholes-Merton Model II

Predicted and True surface

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-10

-8

-6

-4

-2

0

2

4
Predicted and True surface

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-10

-8

-6

-4

-2

0

2

4

Predicted and True surface

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-10

-8

-6

-4

-2

0

2

4

Figure: Predicted vs True values for the BS values for 200 (left), 2000
(mid) and 20000 (right) points.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 82/98

The Black-Scholes-Merton Model III

Figure: Predicted (scatter) vs True values for the BS values for 200 (left),
2000 (mid) and 20000 (right) points.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 83/98

The Black-Scholes-Merton Model IV

Figure: Option prices surface using the prediction and the true values
with 200 (left), 2000 (mid) and 20000 (right) points.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 84/98

The Black-Scholes-Merton Model V

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120
Predicted vs true surface

True response
GPR predicted values

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120
Predicted vs true surface

True response
GPR predicted values

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120
Predicted vs true surface

True response
GPR predicted values

Figure: Predicted vs True values for the BS values for 200 (left), 2000
(mid) and 20000 (right) points and a magnified version below.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 85/98

The Black-Scholes-Merton Model V

4000 4500 5000 5500 6000

25

30

35

40

45

50
Predicted vs true surface

True response
GPR predicted values

3000 3500 4000 4500 5000 5500

30

35

40

45

50

55

60

65

Predicted vs true surface

True response
GPR predicted values

4500 5000 5500 6000 6500

40

45

50

55

60

65

Predicted vs true surface

True response
GPR predicted values

Figure: Predicted vs True values for the BS values for 200 (left), 2000
(mid) and 20000 (right) points and a magnified version below - Zoom in.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 86/98

The Black-Scholes-Merton Model VI

1 1.5 2 2.5 3 3.5 4 4.5 5

Length scale number

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Lo
g

of
 le

ng
th

 s
ca

le

1 1.5 2 2.5 3 3.5 4 4.5 5

Length scale number

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Lo
g

of
 le

ng
th

 s
ca

le

1 1.5 2 2.5 3 3.5 4 4.5 5

Length scale number

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo
g

of
 le

ng
th

 s
ca

le

Figure: Optimized hyperparameter values for the BS values for 200 (left),
2000 (mid) and 20000 (right) points.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 87/98

Black-Scholes-Merton Model VII

Now we consider an opitmized GPR model and apply it to
parameters not covered by the training data. To this end we allow
Tmin = 10, Tmax = 15, Smin = 50, Smax = 150, Kmin = 50 and
Kmax = 150.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150
Predicted vs true surface

True response
GPR predicted values

4000 4500 5000 5500 6000 6500

50

55

60

65

70

75

80

85

Predicted vs true surface

True response
GPR predicted values

Figure: Applying a trained GPR outside the parameter region on which it
was trained.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 88/98

Heston Model I

For the first experiment we consider the following parameter
regions:

Parameter Min Parameter Max

Tmin = 0.25 Tmax = 10
rmin = 0.01 rmax = 0.2
Smin = 70 Smax = 130
Kmin = 70 Kmax = 130

V 0min = 0.0025 V 0max = 0.1
θmin = 0.0025 θmax = 0.1
κmin = 0.03 κmax = 0.5
νmin = 0.05 νmax = 1.0
ρmin = −0.4 ρmax = 0.4

A GPR model is trained using the kernel function kARDSE .

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 89/98

The Heston Model II

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-8

-6

-4

-2

0

2

4

6

8

0 20 40 60 80 100 120
0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-5

-4

-3

-2

-1

0

1

2

3

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Figure: Predicted vs True values for the Heston model. Upper plots show
results with 500 training points and Lower plots show results with 2500
training points.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 90/98

The Heston Model III

Figure: Predicted vs True values for the Heston model. Upper plots show
results with 500 training points and Lower plots show results with 2500
training points.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 91/98

The Heston Model IV

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120
True response
GPR predicted values

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120
True response
GPR predicted values

Figure: Predicted vs True values for the Heston model. Upper plots show
results with 500 training points and Lower plots show results with 2500
training points.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 92/98

American Option BSM Model I

For the third experiment we consider the parameters for the
Black-Scholes-Merton model again:

Parameter Min Parameter Max

Tmin = 0.25 Tmax = 10
rmin = 0.01 rmax = 0.2
σmin = 0.05 σmax = 0.5
Smin = 70 Smax = 130
Kmin = 70 Kmax = 130

A GPR model is trained using the kernel function kARDSE .

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 93/98

American Option BSM Model II

Predicted and True surface

0 100 200 300 400 500 600 700 800 900 1000
-10

-8

-6

-4

-2

0

2

4

Figure: Predicted vs True values for the BS values for 2000 training
points.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 94/98

American Option BSM Model III

Figure: Predicted (scatter) vs True values for the BS values for 2000
training points.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 95/98

American Option BSM Model IV

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80
Predicted vs true surface

True response
GPR predicted values

3500 4000 4500 5000 5500 6000 6500

20

25

30

35

40

Predicted vs true surface

True response
GPR predicted values

Figure: Predicted vs True values for the American Option case with 2000
training points points (left) and zoom in (right).

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 96/98

American Option BSM Model V

1 1.5 2 2.5 3 3.5 4 4.5 5

Length scale number

0

0.2

0.4

0.6

0.8

1

1.2

Lo
g

of
 le

ng
th

 s
ca

le

Figure: Optimized hyperparameter values for the case of an American
Option with 2000 training points.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 97/98

Conclusions and Summary

Gaussian Processes are a statistical technique used in Machine
Learning

GP can be applied for regression and classification

We used the technique for regression applied to learning
option pricing functions

We considered model choice and hyper parameter optimization

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 98/98

Crepey S., Dixon M. Gaussian Process Regression for Derivative Portfolio Modeling and Application to CVA
Computations. SSRN, 2019.

Rasmussen, C. and William C. Gaussian Process for Machine Learning. MIT Press, 2006.

Spiegeleer J., Madan D. B., Reyners S., Schoutens W. . Machine Learning for Quantitative Finance: Fast
Derivative Pricing, Hedging and Fitting. SIAM Journal of Control and Optimization, 31:345–386, 1993.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 98/98

	Intro to GPR and Regression
	Regression
	Gaussian Process Regression (GPR)
	Covariance Functions

	Pricing and Illustration
	Pricing using GPR

	bibliography
	References

