
Machine Learning
- Option Pricing, Calibration, Hedging -

- Deep Introduction -

WBS Quant Conference - Workshop, Rome 2019

Jörg Kienitz / Nikolai Nowaczyk, Quaternion

UCT, BUW, Finciraptor finciraptor.de, joerg.kienitz@gmx.de

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 1/102

Disclaimer

This presentation and any accompanying material are being provided solely for information and general illustrative
purposes. The author will not be responsible for the consequences of reliance upon any information contained in or
derived from the presentation or for any omission of information therefrom and hereby excludes all liability for loss
or damage (including, without limitation, direct, indirect, foreseeable, or consequential loss or damage and
including loss or profit and even if advised of the possibility of such damages or if such damages were foreseeable)
that may be incurred or suffered by any person in connection with the presentation, including (without limitation)
for the consequences of reliance upon any results derived therefrom or any error or omission whether negligent or
not. No representation or warranty is made or given by the author that the presentation or any content thereof will
be error free, updated, complete or that inaccuracies, errors or defects will be corrected.

The views are solely that of the author and not of his employer, Quaternion Risk Management GmbH. The
Chatham House rules apply.

The presentation may not be reproduced in whole or part or delivered to any other person without prior permission
of the author.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 2/102

Neural Networks Introduction

1 Introduction to Artificial Neural Networks
Definition and Construction
ANN at work

Gradient Descent
Autodifferentiation

The Universal Approximation Theorem
Improving the Approximation

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 3/102

Outline

1 Introduction to Artificial Neural Networks
Definition and Construction
ANN at work

Gradient Descent
Autodifferentiation

The Universal Approximation Theorem
Improving the Approximation

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 4/102

Outline

1 Introduction to Artificial Neural Networks
Definition and Construction
ANN at work

Gradient Descent
Autodifferentiation

The Universal Approximation Theorem
Improving the Approximation

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 5/102

Literature

We base our Python and ML based exposition on a bunch of
literature including:
Chollet F. (2018), Ramalho L. (2015), McKinney W. (2017),
Goodfellor I., Bengio Y, Courville A. (2016), James G, Witten D.,
Hastie T, Tibshirani R. (2013), Murphy K. P. (2012), Bishop C.
M. (2006)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 6/102

Fully Connected Neural Networks (FNN)

We consider Fully Connected Neural Networks (FNN)

FNN are the most basic deep neural networks

FNN were designed to approximate some unknown function
for which only sample pairs are available x input and y output

FNN are calibrated or trained on a set of input/output pairs

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 7/102

Example of a FNN

Figure: Example of a FNN.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 8/102

FNN in words

An artificial neural net consists of:

Input layer I of dimension di , i indicates the input layer

One or several hidden layers Hl ,l = l , . . . ,NL with dimensions
dj , j = 1, . . . ,NH

Output layer O of dimension do , o indicates the output layer

This set-up of a layered artificial neural network having an input
and an output layer with a number NL of hidden layers is called
mulit-layer perceptron. If for a given layer the nodes are connected
to all previous ones we call it a fully-connected network. If the
connection is symbolized by an arrow that only points into the
forward direction we call the network feedforward.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 9/102

Definition I

We consider a FNN with NL ∈ N hidden layers. Each layer Ll ,
l ∈ {1, . . . ,NL} has Ni ∈ N units or nodes.
For each layer Ll we take a function given by

wl : RNl → RNl+1

x 7→ Al+1x + bl+1

Where Al+1 = (Al+1
ij) ∈ RNl+1 × RNl is a matrix that carries the

weights. A weight is assigned to the connection of each node ni ,
i = 1, . . . ,Nl for the l-th layer Ll to all nodes nj , j = 1, . . . ,Nl+1

of the l + 1-th layer.
The vector bl+1 is called the bias.
We call the functions wl , l = 1, . . . ,NL − 1 the network weights.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 10/102

Defintion II

Let σl : R→ R be a function called the activation function and
denote Fl := σl ◦ wl

1. Then, the neural network is defined as the
compositon

F := FNL−1 ◦ FNL−2
◦ . . .F1 (1)

If we apply the function F to some input (a vector, a matrix, a
tensor) we consecutively evaluate the chain of functions. Thus, the
input flows through the network (Tensorflow).
We call the layers F1, . . . ,FNL

the hidden layers. Fi is called the
input layer and Fo the output layer.

1We assume the activation function is applied to each node, in principle for
the notation to be correct we should use σl : RNl → RNl and the activation is
applied elementwise. For each node an activation is computed.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 11/102

Definition III

We write
N(σ, di , do ,L) (2)

for a FNN with activation functions σ, input dimension di ∈ N,
output dimension do ∈ N and layer structure L. The layer
structure is given by the number of layers Ll , l ∈ N and the number
of nodes Nl corresponding to the layer l-th layer Ll ,l = 1, . . . ,NL.
If we wish to express the dependence of the net in (2) on the
weights

N(σ, di , do ,L, ω) or N(ω) (3)

The representation (3) is suitable for considering the training or
calibration of the net.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 12/102

Example of a single Artificial Neuron

Figure: Single Artificial Neuron.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 13/102

Calculations for FNN in words

Inputs to a given layer come from the previous one xl ,
l = 1, . . . ,Nl

Connections with corresponding weights al , l = 1, . . . ,Nl .

Processing unit wl weighs the inputs due to the assigned
weights and adds a bias

Activation functions σ for limiting the amplitude of the
output of the specific artificial neuron

The results are the inputs to the next layers or to the output
layer

Such a model is called McCulloch-Pitts model. McCulloch Pitts
1943

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 14/102

Activation Functions

The activation functions applied for each layer play a crucial role in
designing networks. There are several activation functions applied
in practice. Some well known functions are

sigmoid, ex

ex+1

tanh, ex−e−x

ex+e−x

relu, max(x , 0)

leakrelu, 0.001x1x<0 + x1x≥0

elu, α (ex − 1)

logistic, 1
1+e−x

gauss, e−x
2

elliot, x
1+|x |

isqlin, x√
1+αx2

1x<0 + x1x≥0

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 15/102

Activation Functions

-5 0 5
0

0.2

0.4

0.6

0.8

1
Sigmoid Activation

-5 0 5
0

20

40

60

80
ELU Activation

-5 0 5
0

1

2

3

4

5
RELU Activation

-5 0 5
-1

-0.5

0

0.5

1
TANH Activation

-5 0 5
0

0.2

0.4

0.6

0.8

1
LOGISTIC Activation

-5 0 5
-1

0

1

2

3

4

5
LEAKY RELU Activation

-5 0 5
0

0.2

0.4

0.6

0.8

1
GAUSS Activation

-5 0 5
-2

0

2

4

6
INVERSE SQAURE ROOT LINEAR Activation

-5 0 5
-1

-0.5

0

0.5

1
ELLIOT Activation

Figure: Examples for some activation functions.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 16/102

Activation Function for Classification

We use the binary step function for two class classification. It is
used as an activation for producing the output layer.
For an input x ∈ R it leads to the output

y := f (x) := 1{x<0}

In binary classification, classes A and B, an input x ∈ Rn is
propagated through a network and falls either below or above a
certain level, eg. 0. If it is below the level we assign x to class A if
it is above the level we assign it to class B.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 17/102

Activation Function for Classification

We use the softmax activation function for classification. It is used
as an activation for producing the output layer.
For an input x ∈ Rn it leads to an output y ∈ RN given by

y := f (x) := (fi (x), . . . , fi (x), . . . , fN(x))>

with

fi (x) =
exp(xi)∑N
j=1 exp(xj)

∈ (0, 1)

Actually, it determines a discrete probability distribution on
{1, 2, . . . ,N}.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 18/102

One and Multiple Outputs

The output layer can have one or multiple outputs

Classification

Single output - the output is binary and distinguishes two
given classes
Multiple outputs - the output corresponds to a probability
distribution and for classifying an input we take the node with
the highest probability as the prediction

Regression

Single output - this corresponds to a function value. For
option pricing this could be a model price calculated from the
input or an implied volatility
Multiple outputs - this corresponds to a vector of values based
on the input parameters, eg. for a pricing model this can be a
volatility surface or a a surface of option prices

We explicitly specified the network output dimension...

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 19/102

Outline

1 Introduction to Artificial Neural Networks
Definition and Construction
ANN at work

Gradient Descent
Autodifferentiation

The Universal Approximation Theorem
Improving the Approximation

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 20/102

ANN

Figure: ANN Approximation and Training.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 21/102

Training

For the training or calibration of the network it is crucial to
observe the composition of functions Fl given by

FNL−1 ◦ FNL−2 ◦ . . .F1 (4)

For the training the de facto standard is to apply (stochastic)
gradient descent methods combined with automatic differentiation.
To this end we can use the composition and apply the chain rule
for differentiation.
Starting at a given value w0 we apply iteration in direction of the
steepest descent. That is

wn = wn−1 − α∇w l(), α > 0 (5)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 22/102

The Loss Function

The calibration of the FNN is done by considering the following
optimization problem:

ω̂ = argminω∈Ωl(fnet,ω(xi), f (xi) = yi) (6)

with l being a loss function.

Mean Squared Error
l(x , y) = 1

N

∑N
i=1(xi − yi)

2 - standard loss function

Mean Squared Logarithmic Error
l(x , y) = 1

N

∑N
i=1(log(xi)− log(yi))2 - when large values need

to be considered

Absolute Error
l(x , y) = 1

N

∑N
i=1 |xi − yi | - more robust to outliers

Many different loss functions are being applied. For classification
other loss functions need to be considered. We only stick to
regression.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 23/102

Gradient Descent

The General Idea is as follows:

Fix a starting value w0

Choose a step size α

Update the starting value due to

wn = wn−1 − α∇w l(), α > 0 (7)

Stop due to some stopping criteria such as number of
iterations, value of the loss function. Let ns be the iteration
where we stop.

take wns as an approximation for ŵ .

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 24/102

Example

f = lambda x: x**4-2*x**2 - 0.5*x + 2 + np.sin(x)**2

x = np.linspace(-2,2.5,1000)

plt.plot(x,f(x))

plt.xlim([-2,2.5])

plt.ylim([0,5])

plt.show()

Figure: The function f (x) = x4 − 2x2 − 1
2x + 2 + sin(x)2.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 25/102

Example

w_0 = 2 # The algorithm starts at x=2

alpha = 0.1 # learning rate / step size

precision = 0.0001 # break criteria

n_steps = 100 # break criteria

x_list, y_list = [w_0], [f(w_0)]

returns the value of the derivative of our function

def f_prime(x):

return 4*x**3-4*x - 0.5 + 2 * np.sin(x) * np.cos(x)

n = 0 # number of iterations

x_old = w_0 # set the starting value

first iteration to find the new value

ngrad = -f_prime(x_old) # gradient calculation

x_new = x_old + alpha * s_k # the newly suggested value

while (abs(x_new - x_old) > precision) and (n<n_steps-1): # stopping criteria

n = n+1 # increase iterations

x_old = x_new # store current x value

ngrad = -f_prime(x_old) # gradient calculation

x_new = x_old + alpha * ngrad # the newly suggested value

x_list.append(x_new) # append for plotting

y_list.append(f(x_new)) # append for plotting

print solution

print("Local minimum calculated (x value):", x_new)

print("Number of steps to convergence:", len(x_list))

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 26/102

Example - Analysis

Starting value is crucial

Stopping criteria may turn out to be useful

Non-constant step size can be beneficial

Adapted step size
Optimal step size

Convergence is not guaranteed

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 27/102

Figure: Convergence for the example under consideration.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 28/102

Example - Non-Constant Step Size

Figure: Convergence for the example using optimal step size (top) and
adapted step size (bottom).

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 29/102

Versions of Gradient Descent

Batch gradient descent
Standard analytic gradient descent method - updates a given
value wrt the largest negative gradient. Computational intense
since the new step is calculated when all the points in the data
set have been taken into account for gradient calculation.

Stochastic gradient descent
Performs updates of the gradient one after another usually on
shuffled data. Leads to an immediate decrease in the cost
function but frequent updates cause a higher variance and
lead to oscillations around the minimum and does not
converge continuously.

Mini-batch (stochastic) gradient descent
A combination of the standard gradient and the stochastic
gradient descent method.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 30/102

Versions of Gradient Descent

Let TSet denote the size of the test set, then using Keras backend
we have:

GD (Gradient Descent) batch size = TSet,

SGD (Stochastic Gradient Descent), batch size = 1,

MGD (Mini-Batch Gradient Descent), 1 < batch size < TSet

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 31/102

Stochastic Gradient Descent

To consider the idea of Stochastic Gradient Descent we
consider the linear regression

We seek to fit a linear function hα(x) = α0 + α1x to some
sample data

We apply the gradient descent to solve the problem

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 32/102

Example

The Python code for creating the data is given by:

#Create data set

u01 = [0, -0.5] + np.random.rand(50,2)

data = [14, 65] + [6, 30] * u01

#Plot the data

plt.scatter(data[:, 0], data[:, 1], marker=’o’, c=’b’)

plt.title(’Example Linear Regression’)

plt.xlabel(’x values’)

plt.ylabel(’y values’)

plt.xlim([14,21])

plt.ylim([50,95])

plt.show()

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 33/102

Example

For the linear regression the problem is 2 dimensional and, thus, we
need to consider the partial derivatives with respect to the
parameters:

∂

∂α0
J(α0, α1) =

1

m

m∑
i=1

(hα(xi)− yi)

∂

∂α1
J(α0, α1) =

1

m

m∑
i=1

((hα(xi)− yi) · xi)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 34/102

Example

The Python code for this is:

linear function

h = lambda alpha_0,alpha_1,x: alpha_0 + alpha_1*x

mean squared differences

def msqd(x,y,m,alpha_0,alpha_1):

returnValue = 0

for i in range(m):

returnValue += (h(alpha_0,alpha_1,x[i])-y[i])**2

returnValue = returnValue/(2*m)

return returnValue

gradients

def grad_msqd(x,y,m,alpha_0,alpha_1):

returnValue = np.array([0.,0.])

for i in range(m):

returnValue[0] += (h(alpha_0,alpha_1,x[i])-y[i])

returnValue[1] += (h(alpha_0,alpha_1,x[i])-y[i])*x[i]

returnValue = returnValue/(m)

return returnValue

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 35/102

Example

With regard to computing times we store the values in the data
array into x and y. The Python code for the computation is:

alpha_new = np.array([4.0,0.2]) # The starting values

alpha = 0.001 # step size

precision = 0.0001 # stopping rule

n_steps = 10000 # stopping rule

num_steps = 0 # counter for steps

ngrad = float("inf") # stores the gradient

while (np.linalg.norm(ngrad) > precision) and (num_steps < n_steps): # for stopping

num_steps += 1

alpha_old = alpha_new # store the current values

ngrad = -grad_J(x,y,m,alpha_old[0],alpha_old[1]) # calculate the gradient

alpha_new = alpha_old + alpha * ngrad # update due to gradient

print("Local minimum: alpha_0 =", alpha_new[0],"alpha_1 =", alpha_new[1])

print("No of steps",num_steps)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 36/102

Example

With regard to computing times we store the values in the data
array into x and y. The Python code for the computation is:

actualvalues = sp.stats.linregress(x,y)

print("Actual values for alpha are:", "alpha_0 =", actualvalues.intercept, "alpha_1 =", actualvalues.slope)

To plot both solutions to show the difference we use

xx = np.linspace(0,5,1000)

plt.scatter(data[:, 0], data[:, 1], marker=’o’, c=’b’)

plt.plot(xx,h(alpha_new[0],alpha_new[1],xx))

plt.plot(xx,h(actualvalues.intercept,actualvalues.slope,xx))

plt.xlim([1,5])

plt.ylim([0,10])

plt.title(’Linear Regression Example’)

plt.xlabel(’x values’)

plt.ylabel(’y values’)

plt.show()

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 37/102

Stochastic Gradient Descent

Figure: The solutions from linear regression and the gradient descent
algorithm.

Now solution is close but to obtain the correct solution the time
necessary for the gradient descent method to converge is huge.
This highlights the problem for applying this method if large data
sets and many parameters are used.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 38/102

Stochastic Gradient Descent

The standard gradient descent needs to take into account
every example in the entire training set on every step (in cases
where a training set is used for gradient descent).

This is very slow if the training set is sufficiently large or there
are many parameters.

In stochastic gradient descent the update takes place after
looking at each item in the training set, so that we can start
making progress right away.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 39/102

Stochastic Gradient Descent

For the most easiest method, eg without adpating the step size we
use:

1 Choose initial guess x0

2 for k = 0, 1, 2, ... do

2a ngrad = -∇f (xk)
2b xk+1 = xk + αngrad

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 40/102

Stochastic Gradient Descent

When the sample data has just a few data points as in the
example, calculating the gradient may not be very time
consuming.

For very large data sets, this would not be the case.

Instead, we consider a stochastic gradient descent algorithm
for instance for simple linear regression such as the following,
where m is the size of the data set:

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 41/102

Stochastic Gradient Descent

1. Randomly shuffle the data set

2. for k = 0, 1, 2, ... do

2a for i = 1 to m do

2b

(
α1

α2

)
=

(
α1

α2

)
− α

(
2(hθ(xi)− yi)

2xi (hθ(xi)− yi)

)
2c end for

3 end for

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 42/102

Stochastic Gradient Descent

With stochastic gradient descent you run through the entire
data set 1 to 10 times, depending on how fast the data is
converging and how large the data set is.

With batch gradient descent we update after running through
a set of the size of the number of mini batches.

SGD makes progress immediatedly and continues to make
progress stepping through the data.

SGD is the method of choice for optimization on large data
sets.

In contrast to gradient descent, SGD tends to oscillate near a
minimum value and does not get closer continuously.

It may never actually converge to the minimum.

One way around this is to slowly decrease the step size α as
the algorithm runs.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 43/102

Stochastic Gradient Descent

We consider a basic example to illustrate the goal of Stochastic
Gradient Descent

Let us consider the linear regression with 500.000 points

We place the points around the linear function
y = 1.35x + 23 + ε

ε ∼ U(0, 100) for values of x between 0 and 100

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 44/102

Example

The Python code is

f = lambda x: x*1.35+23+np.random.randn(len(x))*10

x = np.random.random(500000)*100

y = f(x)

m = len(y)

xxnew = np.arange(0,len(x))

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 45/102

Example

To implement the SGD algorithm we need to consider shuffling of
the data:

from random import shuffle

x_shuf = []

y_shuf = []

index_shuf = xxnew

shuffle(index_shuf)

for i in index_shuf:

x_shuf.append(x[i])

y_shuf.append(y[i])

The function and the cost function are

h = lambda alpha_0,alpha_1,x: alpha_0 + alpha_1*x

cost = lambda alpha_0,alpha_1, x_i, y_i: 0.5*(h(alpha_0,alpha_1,x_i)-y_i)**2

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 46/102

Example

Now, we can state the basic algorithm:

alpha_old = np.array([0.,0.])

alpha_new = np.array([1.,1.]) # The algorithm starts at [1,1]

n_k = 0.000005 # step size

iter_num = 0

s_k = np.array([float("inf"),float("inf")])

sum_cost = 0

cost_list = []

for j in range(10):

for i in range(m):

iter_num += 1

alpha_old = alpha_new

s_k[0] = (h(alpha_old[0],alpha_old[1],x[i])-y[i])

s_k[1] = (h(alpha_old[0],alpha_old[1],x[i])-y[i])*x[i]

s_k = (-1)*s_k

alpha_new = alpha_old + n_k * s_k

sum_cost += cost(alpha_old[0],alpha_old[1],x[i],y[i])

if (i+1) % 10000 == 0:

cost_list.append(sum_cost/10000.0)

sum_cost = 0

print("Local minimum:", "alpha_0 =", alpha_new[0], "alpha_1 =", alpha_new[1])

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 47/102

Stochastic Gradient Descent

For this method it can be seen that the cost function can quickly
be decreased and levels out later. However it shows some
oscillations:

Figure: Solutions from linear regression and the gradient descent
algorithms.

Solutions are close but for the correct solution the time necessary
for the GD method to converge is huge. It highlights the problem
for GD if large data sets and many parameters are used.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 48/102

Gradient Descent - Algorithms

Vanila SGD

SGD-CM (SGD with classical momentum)

SGD-CM-NAG (SGD with classical momentum and Nesterov’s
Accelerated Gradient)

AdaGrad (Adaptive gradient algorithm)

AdaDelta

RMSProp

Adam

AdaMax

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 49/102

Minibatches

We consider the training set of pairs X ,Y .

In general this set is very large and, thus, expensive to
calculate all gradients..

To this end we take subsets of the full training set

Choosing a subset of cardinality m and use this subset for the
training.

It is common practice to increase the cardinality of the subset until
the modeler is satisfied. The number m is called the minibatch size.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 50/102

The Chain Rule

For the optimization we used the function value and its
gradients

Thus, efficient methods for calculating gradients are needed

Standard methods such as finite differences are not accurate
enough or are slow

Backward Automatic Differentiation is a viable solution:
TensorFlow provides the tf.GradientTape API for this. Computing
the gradient of a computation with respect to its input variables.
Tensorflow records all operations executed inside the context of a
tf.GradientTape onto a tape. Tensorflow then uses that tape and
the gradients associated with each recorded operation to compute
the gradients of a recorded computation using reverse mode
differentiation.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 51/102

Automatic Differentiation

Figure: Automatic Differentiation Illustrated.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 52/102

Dual Numbers - Magic Trick for Fwd AD

Extend all the numbers by adding another argument
x 7→ x + x̄d

This is analogous as for the complex numbers

But let d2 = 0

We have for arithmetic operations:

(x + x̄d) + (y + ȳd) = x + y + (x̄ + ȳ)d

(x + x̄d) · (y + ȳd) = xy(xȳ + x̄y)d

−(x + x̄d) = −x − x̄d

1

x + x̄d
=

1

x
− x̄d

x2

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 53/102

Dual Numbers

Now, consider a polynomial given by

P(x) = a0 + a1x + a2x
2 + . . .+ anx

n

For dual numbers this is

P(x + x̄d) = a0 + a1(x + x̄d) + a2(x + x̄d)2 + . . .+ an(x + x̄d)n

= a0 + a1x + a2x
2 + . . .+ anx

n

+a1x̄d + 2a2xx̄d + . . .+ nanx
n−1x̄d

= P(x) + P ′(x)x̄d

We may choose x̄ as we wish, eg. x̄ = 1

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 54/102

Dual Numbers

Similarly, we can extent the concept to more complex functions

sin(x + x̄d) = sin(x) + cos(x)x̄d

cos(x + x̄d) = cos(x)− sin(x)x̄d
√
x + x̄d =

√
x − x̄d

2
√
x

Summarizing we observe:

A function that is applied to a dual number returns its
derivative in the dual component!

The dual concept can be extended to multi-dimensional
functions

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 55/102

Decomposition of Functions

Let us consider
f (x1, x2) = x1x2 + cos(x1)

and the calculation of
∂f

∂x2
= x1

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 56/102

Decomposition of Functions

Automatic differentiation can be realized by considering the
following steps:

Decompose original code into intrinsic functions

Differentiate intrisic functions effectively symbolically

Multiply with regard to chain rule

Source code transformation or Operator overloading are the
methods of choice here.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 57/102

Function

For instance Python provides the package Autograd,
https://github.com/HIPS/autograd. Gradients are computed
by Autograd first recording every transformation applied to an
input.

Functions are wrapped using the function primitive so that
when they’re called, they add themselves to a list of
operations performed.

Autograd uses a table mapping of these wrapped primitives to
their vector-Jacobian product functions.

Variables to differentiate are flagged using the Box class

Autograd stores a graph specifying all operations performed
on inputs wrt which we differentiate.

Differentiation of the function is differentiation of each node
for this computational graph

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 58/102

Source Code Transformation

For this method we need to code the derivative by hand:

double* f (double x1 , double x2 , double dx1, double dx2)

double w3 , w4 , w5, dw3, dw4, dw5, df[0], df[1]

w3 = x1 * x2

dw3 = dx1 * x2 + x1 * dx2

w4 = sin (x1)

dw4 = cos(x1) * dx1

w5 = w3 + w4

dw5 = dw3 + dw4

df[0] = w5

df[1] = dw5

return df

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 59/102

Operator Overloading

Storing the derivatives as a field of a new data type -Number in
our case- another method would be initiate the storage of the
information needed to compute the derivative in a sequential array
during the function evaluation. In a second step one performs the
differentiation using the recorded data.

Number f(Number x1, Number x2)

w3 = x1 * x2

w4 = cos(x1)

w5 w3 + x4

return w5

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 60/102

Comparison

Source code transformation:

Possible for all computer languages

Can be applied to your old legacy code.

Allows easier compile time optimizations.

Source code swell

More difficult to code the AD tool

Operator overloading:

No changes in your original code

Flexible when you change your code or tool

Easy to code the AD tool

Only possible in selected languages

Compilers may lag behind - code runs slower

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 61/102

Forward Mode

The following figure shows the computational graph for executing
in forward mode.

Figure: Forward Mode Tree.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 62/102

Reverse Mode

The chain rule works in both directions and we can do it in reverse,
ie. use reverse mode. The following figure shows the
computational graph.

Figure: Backward/Reverse Mode Tree.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 63/102

Illustration on Jacobi Matrix

Given a differentiable function f : Rn → Rm. Jacobian is

Figure: Jacobi Matrix Calculation.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 64/102

Illustration on Jacobi Matrix

One sweep in forward mode calculates one column vector of J

One sweep in reverse model calculates one row vector of J

Computational cost of both are nearly the same but reverse
mode needs to store all intermediate values

Choose reverse mode if m = 1 and forward mode if n = 1.
Otherwise finding the optimal combination of modes turns
into a very hard problem

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 65/102

Which Mode to Choose?

Accuracy guaranteed! Complexity not worse than that of the
original function.

AD works on iterative solvers, on functions consisting of
thousands of lines of code.

AD is trivially generalized to higher derivatives (eg. Hessians)
Complexity is quadratic in highest derivative degree.

Alternative to AD is symbolic differentiation, or rather using
algorithms not relying on derivatives.

Divided differences may be just as good as AD in cases where
the underlying function is based on discrete or measured
quantities, or being the result of stochastic simulations.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 66/102

Outline

1 Introduction to Artificial Neural Networks
Definition and Construction
ANN at work

Gradient Descent
Autodifferentiation

The Universal Approximation Theorem
Improving the Approximation

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 67/102

Approximation - Universal Approximation Theorem

From Cybenko G. (1989) we have:
Let σ(·) be a non-constant, bounded and monotonically increasing
continuous function. Let Vm ∈ Rm be any compact subset of Rm.
The space of continuous functions on Vm is denoted by C(Vm).
Given ε > 0 and any function f ∈ C(Vm), there exists and integer
N and constants vi , bi ∈ R and real vectors ωi ∈ Rm, where
i = 1, . . . ,N such that

f̄ (x) =
N∑
i=1

viσ(ω>i x + bi)

as an approximate realisation of the function f , which is
independent of f (·). Specifically,

|f̄ − f (x)| < ε

for all x ∈ Vm.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 68/102

Approximation - Multi-variate Function Version

Approximation Theorem, (Hornik K, Stinchcombe M., White
H. (1989)):
Let FNN be the set of neural networks with activation function

σ : R→ R2,

input dimension di ∈ N and output dimension do ∈ N.
Then, if σ is continuous and non-constant, FNN is dense in
Lp(µ) for all finite measures µ.

2Again, we apply the actication element wise
Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 69/102

Approximation - Multi-variate Function+Derivatives
Version

Approximation Theorem incl. Derivatives, (Hornik K,
Stinchcombe M., White H. (1990)):
Let us consider

f : Rdi → R

and
f ∈ Cn(R)

and FNN being the set of single-layer neural netowrks with
activation function σ : R→ R, input dimension di ∈ N and output
dimension do = 1. Then, if the (non-constant) activation function
σ ∈ Cn(R), then FNN arbitrarily approximates f and all its
derivatives up to order n.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 70/102

Estimation Bounds

Estimation Bounds (Xu U., Chen L. (2008)):
Let us consider

N1(σ, di , do)

being the set of single layer neural networks with sigmoid
activation function. Then,

E
[
‖f − f̂ ‖2

2

]
≤ O

(
Cf

n

)
︸ ︷︷ ︸

bias

+O

(
ndo
N

log(N)

)
︸ ︷︷ ︸

variance

(8)

with n = N1 the number of nodes in the single layer, N the size of
the training set and Cf the first absolute moment of the Fourier
magnitude distribution of f .

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 71/102

Example from Real Life

Equation (8) shows that increasing the bias increases the variance.
To decrease it the size of the training set needs to be increased.
In real life, however, it might not be possible to increase the
training set. Instead we use a validation set.

Figure: Training vs. Validation Error.
Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 72/102

Estimation Bounds

In Barron A.R. (1994) it is proven that

n ≈ Cf

(
N

do log(N)

) 1
2

is the best number of hidden layer nodes in a single layer FNN.

f and, thus, Cf are not known.

Estimate/Optimize number of hidden nodes from given series
of training input-output pairs.

Complexity regularization or minimum description length
criterion - the criterion used should reflect the trade-off
between residual error and model complexity and determines
the most probable model.

Epoch Training - based on experiments it is found that the
optimal n is close to setting C = 1.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 73/102

Deep Learning

Remark:

(i) Eldan R., Shamir O. (2016) show that there exists a simple
function on Rd , expressible by a small 3-layer FNN which
cannot be approximated by any 2-layer network to more than
a certain constant accuracy, unless its width is exponential in
dimension.

(ii) This means essentially that increasing the number of hidden
layers prevents us to use exponentially many nodes in a one
layer network. This suggests that deep networks can be
beneficial when considering approximation problems.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 74/102

Example: Learning Sine

Before considering the financial setting (Pricing and Calibration for
the Heston Stochastic Volatility Model) we apply Neural Networks
to learn

f : R → [−1, 1]

x 7→ sin(x)

Let us consider setting up a simple Neural Network using Keras
and experimenting with some parameters.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 75/102

Example: The Sine Function

We use the following model

x = 2* np.pi * np.random.rand(100) #np.arange(0,np.pi*2,.1)

y = np.sin(x) # standard sine function

model = Sequential([

Dense(10, input_shape=(1,)),

Activation(’sigmoid’),

Dense(1),

Activation(’sigmoid’)

])

It is possible to change the activation function for the layer by
replacing

Activation(’sigmoid’)

by

Activation(’NAME’)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 76/102

Example: The Sine Function

The model is complied with a mean squared error loss function,
using stochastic gradient descent

model.compile(loss=’mean_squared_error’, optimizer=’SGD’)

The model is trained on the x data with the labels y using 50
epochs and batchs ize = 1. This means we run 50 times through
the data set and use full gradient descent. Setting the batch size
to other values we can apply mini-batches or for taking the
cardinality of all x values we have gradient descent. With the
trained model we predict

model.fit(x, y, epochs=50, batch_size=1, verbose=0)

preds = model.predict(x)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 77/102

Example: The Activation

Figure: Results for changing the activation function for the output layer.
The green graph is with a linear activation (left). Changing the
activation function for the hidden layer (right) to tanh (green). The true
solution (blue).

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 78/102

Example: Transformation

Apply transformation y 7→ y+1
2 to transform all the values taken to

[0, 1] since the sigmoid function takes only values in [0, 1].

Figure: Results for using transformed inputs (red) with the sigmoid and
tanh (green dots and crosses). The true solution (blue).

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 79/102

Example: Deep Networks

We consider adding layers to the network. The Python code is
given by:

model = Sequential([

Dense(10, input_shape=(1,)),

Activation(’tanh’),

Dense(10, input_shape=(1,)),

Activation(’tanh’),

Dense(1)

])

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 80/102

Example: Deep Networks

Figure: Results for single layer network (green) and double layer network
(red) keeping the number of nodes constant to 10. The true solution
(blue).

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 81/102

Example: Deep Networks with more Nodes

Figure: Results for a double layer network with 10 nodes(red) and 20
nodes (green) per layer. The true solution (blue).

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 82/102

Example: Deep Networks with many Epochs

We increase the number of epoch from 100 to 1000.

Figure: Results for epoch = 100 (red) and epoch = 1000 (green). The
true solution (blue).

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 83/102

Example: A 2dim Function

We consider the function

f (x , y) = sin(x) cos(y)

Figure: The Function we wish to ‘learn‘.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 84/102

Example: A 2dim Function

First, we import the necessary functionality

import numpy as np

from keras.layers import Dense, Activation

from keras.models import Sequential

from keras.optimizers import Adam

import matplotlib.pyplot as plt

from matplotlib import cm

from mpl_toolkits.mplot3d import Axes3D

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 85/102

Example: A 2dim Function

Some helper functions

sample the input space of your function randomly

def sample_x_random(N):

x0 = np.random.uniform(0, 12.5, N)

x1 = np.random.uniform(0, 12.5, N)

return np.column_stack((x0, x1))

or simply return np.random.uniform(0, 12.5, size=(N,2))

sample the input space of your function on 1 2D grid

def sample_x_grid(N):

x0 = np.linspace(0, 12.5, N)

x1 = np.linspace(0, 12.5, N)

#outer product

x0_grid, x1_grid = np.meshgrid(x0, x1)

reshape and stack side by side

return np.column_stack([x0_grid.flatten(), x1_grid.flatten()])

Conpute the function

def f(x):

return (np.sin(x[:,0]) * np.cos(x[:,1])).reshape(-1,1)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 86/102

Example: A 2dim Function

Generating data for learning

x = sample_x_random(1000)

y = f(x)

fig = plt.figure(figsize=(6,4))

ax = fig.add_subplot(111, projection=’3d’)

ax.scatter(x[:,0], x[:,1], y)

ax.set_xlabel(’X0 ’)

ax.set_ylabel(’X1 ’)

ax.set_zlabel(’Y ’)

plt.show()

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 87/102

Example: A 2dim Function

Figure: Training data generated using the predefined functions.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 88/102

Example: A 2dim Function

Plotting the function f

N = 50

x = sample_x_grid(N)

y = f(x)

fig = plt.figure(figsize=(10,6))

ax = fig.add_subplot(111, projection=’3d’)

surf = ax.plot_surface(

x[:,0].reshape(N,N),

x[:,1].reshape(N,N),

y.reshape(N,N),

rstride=1,

cstride=1,

linewidth=.2,

edgecolors=’k’,

cmap=cm.jet

)

ax.set_zlim3d(np.min(y), np.max(y))

fig.colorbar(surf)

ax.set_xlabel(’X0 ’), ax.set_ylabel(’X1 ’), ax.set_zlabel(’Y ’)

plt.show()

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 89/102

Example: A 2dim Function

Figure: Two approximations to the function function
f (x , y) = sin(x) cos(x) from 84 using a NN with 10.000 training points
(left) and 100.000 (right).

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 90/102

Example: A 2dim Function

Defining the model

model = Sequential([

Dense(100, input_shape=(2,)),

Activation(’relu’),

Dense(100),

Activation(’relu’),

Dense(1)

])

model.compile(loss=’mean_squared_error’, optimizer=Adam())

#with just 10.000 samples for training

x = sample_x_random(10*1000)

y = f(x)

model.fit(x, y, epochs=10)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 91/102

Example: A 2dim Function

This generates the plot for the function using the NN

fig = plt.figure(figsize=(10,6))

ax = fig.add_subplot(111, projection=’3d’)

surf = ax.plot_surface(

x[:,0].reshape(N,N),

x[:,1].reshape(N,N),

y_nn.reshape(N,N),

rstride=1,

cstride=1,

linewidth=.2,

edgecolors=’k’,

cmap=cm.jet

)

ax.set_zlim3d(np.min(y), np.max(y))

fig.colorbar(surf)

ax.set_xlabel(’X0 ’)

ax.set_ylabel(’X1 ’)

ax.set_zlabel(’Y from NN’)

plt.title(’NN output’)

plt.show()

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 92/102

Example: A 2dim Function

Now, increasing the values used for training

model = Sequential([

Dense(100, input_shape=(2,)),

Activation(’relu’),

Dense(100),

Activation(’relu’),

Dense(1)

])

model.compile(loss=’mean_squared_error’, optimizer=Adam(), metrics=[’mean_squared_error’])

using 100.000 sample points for training

x = sample_x_random(100*1000)

x = np.append(x,[[12.5,12.5]], axis = 0)

y = f(x)

model.fit(x, y, epochs=10)

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 93/102

Error from NN Approximation

Figure: Error from Approximation with a NN. There is an artefact around
the point [1, 1].

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 94/102

Improving the Approximation

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 95/102

Outline

1 Introduction to Artificial Neural Networks
Definition and Construction
ANN at work

Gradient Descent
Autodifferentiation

The Universal Approximation Theorem
Improving the Approximation

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 96/102

Overfitting / Underfitting

When training a neural network we wish to accomodate the
following targets:

The training error on the training set should be as small as
possible

The generalisation error of the calibrated network on unseen
data should be as small as possible

The notions of underfitting and overfitting are linked to these
targets:
Underfitting means that we do not perform very well on the
training set (high bias) wheras overfitting refers to the case where
we do pretty well on the training set (low bias) but poor on the
unseen data (high variance).

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 97/102

Possibilities for Improvement

Network selection (FNN, CNN, RNN, ...)

Regularization

Dropout

Weights initialization

Learning slowdown/learning rate

Gradient descent variation

Activation function variation

Data augmentation

Injecting noise into input/output

Ensemble methods

Hyperparameter optimization

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 98/102

Hyperparameters

To balance underfitting and overfitting we need to adopat the
hyperparameters

number of layers

number of nodes on each layer

activation functions and their parametrization

...

Remark: We could use the result on the approximation error
bounds given earlier.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 99/102

Train, Validate, Test

In general the initial data is split into three sets

Xtrain, Xvalidate, Xtest

the training, the validation and the test set. The vast amount
of data is used for the training.

The validation set is then used to optimize the
hyperparameters

The test set acts as a blueprint for unseen data

Remark: When optimizing the hyperparameters we implicitly
reference to unseen data and information of the validation set
enters the training procedure. However, we may rely on (k-fold)
cross validation to reduce this bias.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 100/102

(K -fold) Cross Validation

Often a limited amount of data is available. Then, to optimally use
it and train the network we apply k-fold Cross Validation.

Permute the data set - Randomly shuffle the data

Split the data set into k groups of approximately the same
size, G1, . . . ,Gk and iterate for l = 1, . . . , k

Select the l-th group and hold it out

Train a model on G1 ∪ Gl−1 ∪ Gl+1 ∪ . . . ∪ Gk and test on Gl

Retain evaluation score sl and discard the model

The model’s skill is computed from the k evaluation scores sl ,
l = 1, . . . , k - usually the mean of the sl values.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 101/102

(k-fold) Cross Validation

The question remains of how to choose k? Let n denote the size of
the data set. We may wish to consider one of the following:

Representative: The value for k is chosen such that each
train/test group of data samples is large enough to be
statistically representative of the broader dataset.

k = 5 or 10: The value for k is fixed to either 5 or 10 - no
formal rule but this is (really!) what can be found in the
literature... It represents that test sets should be around 10%
or 20% of the whole data.

k = n: Thus, we use n − 1 samples and leave just one aside -
leave-one-out cross-validation.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 102/102

Barron A.R. Approximation and estimation bounds for artificial neural networks. Machine Learning, 14(1):115–133,
1994.

Bishop C. M. Pattern Recognition and Machine Learning. Springer, 2006.

Chollet F. Deep Learning with Python. Manning, 2018.

Cybenko G. Approximations by superpositons of sigmoidal functions. Mathematics of Control, Signals, and
Systems, 2(4):303–314, 1989.

Eldan R., Shamir O. The power of depth for feedforward neural networks. JMLR: Workshop and Conference
Proceedings, 49(1):1–34, 2016.

Goodfellor I., Bengio Y, Courville A. Deep Learning. MIT Press, 2016.

Hornik K, Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural
Networks, 2(5):359–366, 1989.

Hornik K, Stinchcombe M., White H. Universal approximation of an unknown mapping and its derivatives using
multilayer feedforward networks. Neural Networks, 3(11), 1990.

James G, Witten D., Hastie T, Tibshirani R. An Introduction to Statistical Learning. Springer, 2013.

McKinney W. Python for Data Analytics, 2nd edition. O’Reilley, 2017.

Murphy K. P. Machine Learning. MIT Press, 2012.

Ramalho L. Fluent Python. O’Reilley, 2015.

Xu U., Chen L. . Application of New Adaptive Higher Order Neural Networks in Data Mining. in: The Sixth
International Symposium on Neural Networks (ISNN 2009), Springer, 2008.

Jörg Kienitz / Nikolai Nowaczyk, Quaternion Machine Learning- Option Pricing, Calibration, Hedging - 102/102

	Introduction to Artificial Neural Networks
	Definition and Construction
	ANN at work
	The Universal Approximation Theorem
	Improving the Approximation

	bibliography
	References

